14.05.2023

The partial pressure of hellium gas in a gaseous mixture of hellium and hydrogen is

. 6

Faq

Chemistry
Step-by-step answer
P Answered by PhD

Answer:

52.6 gram

Step-by-step explanation:

It is clear by the equation 2(27+3×35.5)= 267 gm of AlCl3 reacts with 6× 80 = 480 gm of Br2 . So 29.2 gm reacts = 480× 29.2/267= 52.6 gm

Chemistry
Step-by-step answer
P Answered by PhD

Answer:

Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N2 gas at 328K and 0.884 atm is 26.07 L.

An ideal gas is a theoretical gas that is considered to be composed of point particles that move randomly and do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.

The pressure, P, the temperature, T, and the volume, V, of an ideal gas, are related by a simple formula called the ideal gas law:  

P×V = n×R×T

where P is the gas pressure, V is the volume that occupies, T is its temperature, R is the ideal gas constant, and n is the number of moles of the gas. The universal constant of ideal gases R has the same value for all gaseous substances.

Explanation:

In this case, you know:

P= 0.884 atm

V= ?

n= Answer:Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N 0.857 moles (where 28 g/mole is the molar mass of N₂, that is, the amount of mass that the substance contains in one mole.)

R=0.082Answer:Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N

T= 328 K

Replacing in the ideal gas law:

0.884 atm×V= 0.857 moles× 0.082Answer:Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N ×328 K

Solving:

Answer:Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N

V= 26.07 L

The volume of a container that contains 24.0 grams of N2 gas at 328K and 0.884 atm is 26.07 L.

Chemistry
Step-by-step answer
P Answered by PhD
15 moles.Explanation:Hello,In this case, the undergoing chemical reaction is:Clearly, since carbon and oxygen are in a 1:1 molar ratio, 15 moles of carbon will completely react with 15 moles of oxygen, therefore 15 moles of oxygen remain as leftovers. In such a way, since carbon and carbon dioxide are also in a 1:1 molar ratio, the theoretical yield of carbon dioxide is 15 moles based on the stoichiometry:Best regards.
Chemistry
Step-by-step answer
P Answered by PhD
Answer: The product formed is potassium chloride.
Explanation:
Precipitation reaction is defined as the chemical reaction in which an insoluble salt is formed when two solutions are mixed containing soluble substances. The insoluble salt settles down at the bottom of the reaction mixture.

The chemical equation for the reaction of potassium phosphate and magnesium chloride follows (look at the picture)

2 moles of aqueous solution of potassium phosphate reacts with 3 moles of aqueous solution of magnesium chloride to produce 1 mole of solid magnesium phosphate and 6 moles of aqueous solution of potassium chloride.
Answer: The product formed is potassium chloride.
Explanation:
Precipitation reaction is defined a
Chemistry
Step-by-step answer
P Answered by PhD
Answer: B. carbon tetrachloride, CCI4
Explanation: The other options are incorrect. Let's write the correct formulas:
A. Diarsenic pentoxide - As2O5
C. Sodium dichromate - Na2Cr2O7
D. magnesium phosphide - Mg3P2
Chemistry
Step-by-step answer
P Answered by PhD
Answer: 306 L
Explanation: Using the ideal gas law,
PV = nRT
where R = 0.08206 L•atm/(mol•°K), solving for n gives
n = PV/(RT)
n = (845 mmHg) (270 L) / ((0.08206 L•atm/(mol•°K)) (24 °C))

Convert the given temperature to °K and the given pressure to atm:
24 °C = (273.15 + 24) °K ≈ 297.2 °K
(845 mmHg) × (1/760 atm/mmHg) ≈ 1.11 atm

Then the balloon contains
n = (1.11 atm) (270 L) / ((0.08206 L•atm/(mol•°K)) (297.2 °K))
n ≈ 12.3 mol
of He.

Solve the same equation for V :
V = nRT/P

Convert the target temperature to °K:
-50 °C = (273.15 - 50) °K = 223.15 °K

Then the volume under the new set of conditions is
V = (12.3 mol) (0.08206 L•atm/(mol•°K)) (223.15 °K) / (0.735 atm)
V ≈ 306 L
Chemistry
Step-by-step answer
P Answered by PhD
Answer: B. 7.2 x 10(23rd power)
Explanation:
Avogadro's number is defined as the number of particles found in an amount of substance per mole. It is the factor that relates the moles of a substance to the mass of that substance. We will use Avogadro's number to calculate the number of moles of water. as follows:
Avogadro's number = 1 mol = 6.022 x 10^23 particles.
we will use the conversion factor to calculate the number of moles of water:
1.20 = N x (1mol/6.022x10^23 particles)
N = 1.20/(1mol/6.022x10^23 particles)
N = 7.2 x 10(23rd power)
Chemistry
Step-by-step answer
P Answered by PhD
Answer: rate of reaction can be monitored by measuring the time taken for a fixed amount of sulphur to be produced
Explanation: The reaction of sodium thiosulfate with hydrochloric acid is:
Na₂S₂O₃(aq)+2HCl(aq)→2NaCl(aq)+SO₂(g)+S(s)+H₂O(l)
A precipitate of sulphur forms
Therefore rate of reaction can be monitored by measuring the time taken for a fixed amount of sulphur to be produced
Chemistry
Step-by-step answer
P Answered by PhD
Answer: musculoskeletal
Explanation: The musculoskeletal system is a functional set of skeletal bones, their connections (joints and synarthrosis) and somatic musculature. Rheumatoid arthritis affects the joints, respectively, the musculoskeletal system of the body is most affected.
Chemistry
Step-by-step answer
P Answered by PhD
Answer: A, C, E.
Explanation: A) An atomic emission spectrum occurs when an element in the gas state absorbs energy, and light that corresponds to the energies of specific electrons.
Atomic spectra occur when electromagnetic radiation is emitted or absorbed by ions, free or weakly bound atoms (in gases or vapors) => NOT in a solid state

C) The light that an element emits is made up of a limited number of narrow lines of light that produce a unique pattern, or atomic emissions spectrum, for that element.
Each elements emission spectrum is distinct because each element has a different set of electron energy levels. The emission lines correspond to the differences between various pairs of the many energy levels. The lines (photons) are emitted as electrons fall from higher energy orbitals to lower energies.

E) An atomic emission spectrum shows that pattern formed when light emitted by an element is separated into its different component wavelengths.
Atomic spectra caused by quantum transitions between different energy levels of free (weakly bound) atoms and resulting from the emission or absorption of electromagnetic radiation by them are linear, i.e. consist of separate spectral lines.

Try asking the Studen AI a question.

It will provide an instant answer!

FREE