Chemistry : asked on ronaldo22
 26.03.2020

in a laboratory activity, a student tuff area a 20.0 MILIMETER sample of HCL usuing 0.025 M NaOH. in one of the titration trials, 17.6 millimeters of the base solution exaclty neutrazlizdd the acid sample

. 4

Faq

Chemistry
Step-by-step answer
P Answered by Master
Answer: 0.0045 mol
Explanation: Convert 30 ml to l: 30 mL = 0.03 L
Molarity = mol/l
mol = molarity * L
mol = 0.15 * 0.03 = 0.0045 mol
Answer: 0.0045 mol
Explanation: Convert 30 ml to l: 30 mL = 0.03 L
Molarity = mol/l
mol = molarit
Chemistry
Step-by-step answer
P Answered by PhD
Answer: chalcogens.
Explanation: Strontium is an alkaline earth metal, it always exhibits a degree of oxidation in its compounds +2.
Chalcogens are a group of 6 chemical elements (oxygen O, sulfur S, selenium se, tellurium te, polonium Po) that have an oxidation state of -2 => Chalcogens will combine with strontium in a ratio of 1:1.
Chemistry
Step-by-step answer
P Answered by PhD

Answer:

52.6 gram

Step-by-step explanation:

It is clear by the equation 2(27+3×35.5)= 267 gm of AlCl3 reacts with 6× 80 = 480 gm of Br2 . So 29.2 gm reacts = 480× 29.2/267= 52.6 gm

Chemistry
Step-by-step answer
P Answered by PhD

Answer:

Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N2 gas at 328K and 0.884 atm is 26.07 L.

An ideal gas is a theoretical gas that is considered to be composed of point particles that move randomly and do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.

The pressure, P, the temperature, T, and the volume, V, of an ideal gas, are related by a simple formula called the ideal gas law:  

P×V = n×R×T

where P is the gas pressure, V is the volume that occupies, T is its temperature, R is the ideal gas constant, and n is the number of moles of the gas. The universal constant of ideal gases R has the same value for all gaseous substances.

Explanation:

In this case, you know:

P= 0.884 atm

V= ?

n= Answer:Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N 0.857 moles (where 28 g/mole is the molar mass of N₂, that is, the amount of mass that the substance contains in one mole.)

R=0.082Answer:Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N

T= 328 K

Replacing in the ideal gas law:

0.884 atm×V= 0.857 moles× 0.082Answer:Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N ×328 K

Solving:

Answer:Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N

V= 26.07 L

The volume of a container that contains 24.0 grams of N2 gas at 328K and 0.884 atm is 26.07 L.

Chemistry
Step-by-step answer
P Answered by PhD
Answer: 25 g
Explanation: Given:
Original amount (N₀) = 100 g
Number of half-lives (n) = 11460/5730 = 2
Amount remaining (N) = ?
N = 1/2ⁿ × N₀
N = 1/2^2 × 100
N = 0.25 × 100
N = 25 g
Chemistry
Step-by-step answer
P Answered by PhD
Answer: 7.8125 g
Explanation: Given:
Original amount (N₀) = 500 g
Number of half-lives (n) = 9612/1602 = 6
Amount remaining (N) = ?
N = 1/2ⁿ × N₀
N = 1/2^6 × 500
N = 0.015625 × 500
N = 7.8125 g
Chemistry
Step-by-step answer
P Answered by PhD
Answer: B. carbon tetrachloride, CCI4
Explanation: The other options are incorrect. Let's write the correct formulas:
A. Diarsenic pentoxide - As2O5
C. Sodium dichromate - Na2Cr2O7
D. magnesium phosphide - Mg3P2
Chemistry
Step-by-step answer
P Answered by PhD
Answer: 306 L
Explanation: Using the ideal gas law,
PV = nRT
where R = 0.08206 L•atm/(mol•°K), solving for n gives
n = PV/(RT)
n = (845 mmHg) (270 L) / ((0.08206 L•atm/(mol•°K)) (24 °C))

Convert the given temperature to °K and the given pressure to atm:
24 °C = (273.15 + 24) °K ≈ 297.2 °K
(845 mmHg) × (1/760 atm/mmHg) ≈ 1.11 atm

Then the balloon contains
n = (1.11 atm) (270 L) / ((0.08206 L•atm/(mol•°K)) (297.2 °K))
n ≈ 12.3 mol
of He.

Solve the same equation for V :
V = nRT/P

Convert the target temperature to °K:
-50 °C = (273.15 - 50) °K = 223.15 °K

Then the volume under the new set of conditions is
V = (12.3 mol) (0.08206 L•atm/(mol•°K)) (223.15 °K) / (0.735 atm)
V ≈ 306 L
Chemistry
Step-by-step answer
P Answered by PhD
Answer: -166.67 degrees Celsius.
Explanation: The equation of state of an ideal gas, also called the Mendeleev-Clapeyron equation, has the form: PV = nRT, where P is the density of the gas, V is the volume of the gas, n is the molar mass of the gas, T is the temperature of the gas, R is the universal gas constant = 8.314 J/(mol*K)
The gas temperature at a pressure of P = 978 mm. mercury column, molar mass n = 3.7 mol, and volume V = 25.12 liters is -166.67 degrees Celsius.
Chemistry
Step-by-step answer
P Answered by PhD
Answer: B. 7.2 x 10(23rd power)
Explanation:
Avogadro's number is defined as the number of particles found in an amount of substance per mole. It is the factor that relates the moles of a substance to the mass of that substance. We will use Avogadro's number to calculate the number of moles of water. as follows:
Avogadro's number = 1 mol = 6.022 x 10^23 particles.
we will use the conversion factor to calculate the number of moles of water:
1.20 = N x (1mol/6.022x10^23 particles)
N = 1.20/(1mol/6.022x10^23 particles)
N = 7.2 x 10(23rd power)

Try asking the Studen AI a question.

It will provide an instant answer!

FREE