08.04.2023

You used a telescope and other mathematics to discover that Jupiter is 5.20 au from the sun. Use the equation to find its orbital period. Round to the nearest tenth of anyear

. 7

Faq

Physics
Step-by-step answer
P Answered by PhD

11.9 years

Explanation:

We can find the orbital period by using Kepler's third law, which states that the ratio between the square of the orbital period and the cube of the average distance of a planet from the Sun is constant for every planet orbiting aroudn the Sun:

\frac{T^2}{r^3}=const.

Using the Earth as reference, we can re-write the law as

\frac{T_e^2}{r_e^2}=\frac{T_j^2}{r_j^3}

where

Te = 1 year is the orbital period of the Earth

re = 1 AU is the average distance of the Earth from the Sun

Tj = ? is the orbital period of Jupiter

rj = 5.20 AU is the average distance of Jupiter from the Sun

Substituting the numbers and re-arranging the equation, we find:

T_j=\sqrt{\frac{T_e^2 r_j^3}{T_j^2}}=\sqrt{\frac{(1 y)^2 (5.2 AU)^3}{(1 AU)^3}}=11.9 y

Physics
Step-by-step answer
P Answered by PhD

11.9 years

Explanation:

We can find the orbital period by using Kepler's third law, which states that the ratio between the square of the orbital period and the cube of the average distance of a planet from the Sun is constant for every planet orbiting aroudn the Sun:

\frac{T^2}{r^3}=const.

Using the Earth as reference, we can re-write the law as

\frac{T_e^2}{r_e^2}=\frac{T_j^2}{r_j^3}

where

Te = 1 year is the orbital period of the Earth

re = 1 AU is the average distance of the Earth from the Sun

Tj = ? is the orbital period of Jupiter

rj = 5.20 AU is the average distance of Jupiter from the Sun

Substituting the numbers and re-arranging the equation, we find:

T_j=\sqrt{\frac{T_e^2 r_j^3}{T_j^2}}=\sqrt{\frac{(1 y)^2 (5.2 AU)^3}{(1 AU)^3}}=11.9 y

Mathematics
Step-by-step answer
P Answered by PhD

Cost of 7 gallons=$24.50

Cost of 1 gallon=24.50/7=3.5

Cost of 15 gallons=15*3.5=52.5

Cost of 15 gallons will be $52.5

Mathematics
Step-by-step answer
P Answered by PhD

F=ma

where F=force

m=mass

a=acceleration

Here,

F=4300

a=3.3m/s2

m=F/a

    =4300/3.3

    =1303.03kg

Mathematics
Step-by-step answer
P Answered by PhD

The solution is given in the image below

The solution is given in the image below
Mathematics
Step-by-step answer
P Answered by PhD

The wood before starting =12 feet

Left wood=6 feet

Wood used till now=12-6=6 feet

Picture frame built till now= 6/(3/4)

=8 pieces

Therefore, till now 8 pieces have been made.

Try asking the Studen AI a question.

It will provide an instant answer!

FREE