06.02.2021

Draw the structure of the isomers of c6h11br that contains a 5-membered ring and is least reactive in an sn1 reaction.

. 0

Step-by-step answer

17.05.2023, solved by verified expert
Unlock the full answer
1 students found this answer . helpful

We have to know the structure of the isomer of C₆H₁₁Br which contains 5-membered ring and is least reactive in an SN¹ reaction.

The structure is: isomer (a) shown in figure where methyl group and Br atom connected to the adjacent carbons in the ring.

There are four isomers possible with molecular formula C₆H₁₁Br. Those are shown in figure as (a), (b), (c), (d).

SN¹ reaction takes place through carbocation  intermediate formation. If carbocation is more stable, SN¹ reaction will be more faster and if carbocation is not stable, SN¹ reaction will be slower.

The stability of carbocation depends on number of α-H atoms. If the number of α-H atom is more, hyperconjugation in the carbocation will be more; as a consequence, SN¹ reaction rate will be faster.

On the other hand, if the number of α-H atom is less, hyperconjugation in the carbocation will be less; as a consequence, SN¹ reaction rate will be slow.

The carbocation of isomer (a) contains  α-H atom= 3, all other isomers contain minimum 4 α-H atoms.


Draw the structure of the isomers of c6h11br, №15372283, 06.02.2021 00:12
It is was helpful?

Faq

Chemistry
Step-by-step answer
P Answered by PhD

We have to know the structure of the isomer of C₆H₁₁Br which contains 5-membered ring and is least reactive in an SN¹ reaction.

The structure is: isomer (a) shown in figure where methyl group and Br atom connected to the adjacent carbons in the ring.

There are four isomers possible with molecular formula C₆H₁₁Br. Those are shown in figure as (a), (b), (c), (d).

SN¹ reaction takes place through carbocation  intermediate formation. If carbocation is more stable, SN¹ reaction will be more faster and if carbocation is not stable, SN¹ reaction will be slower.

The stability of carbocation depends on number of α-H atoms. If the number of α-H atom is more, hyperconjugation in the carbocation will be more; as a consequence, SN¹ reaction rate will be faster.

On the other hand, if the number of α-H atom is less, hyperconjugation in the carbocation will be less; as a consequence, SN¹ reaction rate will be slow.

The carbocation of isomer (a) contains  α-H atom= 3, all other isomers contain minimum 4 α-H atoms.


Draw the structure of the isomers of c6h11br that contains a 5-membered ring and is least reactive i
Chemistry
Step-by-step answer
P Answered by Master
Answer: 0.0045 mol
Explanation: Convert 30 ml to l: 30 mL = 0.03 L
Molarity = mol/l
mol = molarity * L
mol = 0.15 * 0.03 = 0.0045 mol
Answer: 0.0045 mol
Explanation: Convert 30 ml to l: 30 mL = 0.03 L
Molarity = mol/l
mol = molarit
Chemistry
Step-by-step answer
P Answered by PhD
Answer: chalcogens.
Explanation: Strontium is an alkaline earth metal, it always exhibits a degree of oxidation in its compounds +2.
Chalcogens are a group of 6 chemical elements (oxygen O, sulfur S, selenium se, tellurium te, polonium Po) that have an oxidation state of -2 => Chalcogens will combine with strontium in a ratio of 1:1.
Chemistry
Step-by-step answer
P Answered by PhD

Answer:

Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N2 gas at 328K and 0.884 atm is 26.07 L.

An ideal gas is a theoretical gas that is considered to be composed of point particles that move randomly and do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.

The pressure, P, the temperature, T, and the volume, V, of an ideal gas, are related by a simple formula called the ideal gas law:  

P×V = n×R×T

where P is the gas pressure, V is the volume that occupies, T is its temperature, R is the ideal gas constant, and n is the number of moles of the gas. The universal constant of ideal gases R has the same value for all gaseous substances.

Explanation:

In this case, you know:

P= 0.884 atm

V= ?

n= Answer:Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N 0.857 moles (where 28 g/mole is the molar mass of N₂, that is, the amount of mass that the substance contains in one mole.)

R=0.082Answer:Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N

T= 328 K

Replacing in the ideal gas law:

0.884 atm×V= 0.857 moles× 0.082Answer:Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N ×328 K

Solving:

Answer:Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N

V= 26.07 L

The volume of a container that contains 24.0 grams of N2 gas at 328K and 0.884 atm is 26.07 L.

Chemistry
Step-by-step answer
P Answered by PhD
Answer: 25 g
Explanation: Given:
Original amount (N₀) = 100 g
Number of half-lives (n) = 11460/5730 = 2
Amount remaining (N) = ?
N = 1/2ⁿ × N₀
N = 1/2^2 × 100
N = 0.25 × 100
N = 25 g
Chemistry
Step-by-step answer
P Answered by PhD
Answer: 7.8125 g
Explanation: Given:
Original amount (N₀) = 500 g
Number of half-lives (n) = 9612/1602 = 6
Amount remaining (N) = ?
N = 1/2ⁿ × N₀
N = 1/2^6 × 500
N = 0.015625 × 500
N = 7.8125 g
Chemistry
Step-by-step answer
P Answered by PhD
Answer: The product formed is potassium chloride.
Explanation:
Precipitation reaction is defined as the chemical reaction in which an insoluble salt is formed when two solutions are mixed containing soluble substances. The insoluble salt settles down at the bottom of the reaction mixture.

The chemical equation for the reaction of potassium phosphate and magnesium chloride follows (look at the picture)

2 moles of aqueous solution of potassium phosphate reacts with 3 moles of aqueous solution of magnesium chloride to produce 1 mole of solid magnesium phosphate and 6 moles of aqueous solution of potassium chloride.
Answer: The product formed is potassium chloride.
Explanation:
Precipitation reaction is defined a
Chemistry
Step-by-step answer
P Answered by PhD
Answer: B. carbon tetrachloride, CCI4
Explanation: The other options are incorrect. Let's write the correct formulas:
A. Diarsenic pentoxide - As2O5
C. Sodium dichromate - Na2Cr2O7
D. magnesium phosphide - Mg3P2
Chemistry
Step-by-step answer
P Answered by PhD
Answer: a. basic
b. basic
c. acidic
d. neutral

Explanation: Acids and bases can be classified in terms of hydrogen ions or hydroxide ions, or in terms of electron pairs. (look at the picture)
Let us note that from the pH scale, a pH of;
0 - 6.9 is acidic
7 is neutral
8 - 14 is basic

But pH= - log [H^+]
pOH = -log [OH^-]
Then;
pH + pOH = 14
Hence;
pH = 14 - pOH

a. [H+] = 6.0 x 10-10M
pH= 9.22 is basic
b. [OH-] = 30 × 10-2M
pH = 13.5 is basic
C. IH+1 = 20× 10-7M
pH = 0.56 is acidic
d. [OH-] = 1.0 x 10-7M
pH = 7 is neutral
Answer: a. basic
b. basic
c. acidic
d. neutral

Explanation: Acids and bases can be classified
Chemistry
Step-by-step answer
P Answered by PhD
Answer: 306 L
Explanation: Using the ideal gas law,
PV = nRT
where R = 0.08206 L•atm/(mol•°K), solving for n gives
n = PV/(RT)
n = (845 mmHg) (270 L) / ((0.08206 L•atm/(mol•°K)) (24 °C))

Convert the given temperature to °K and the given pressure to atm:
24 °C = (273.15 + 24) °K ≈ 297.2 °K
(845 mmHg) × (1/760 atm/mmHg) ≈ 1.11 atm

Then the balloon contains
n = (1.11 atm) (270 L) / ((0.08206 L•atm/(mol•°K)) (297.2 °K))
n ≈ 12.3 mol
of He.

Solve the same equation for V :
V = nRT/P

Convert the target temperature to °K:
-50 °C = (273.15 - 50) °K = 223.15 °K

Then the volume under the new set of conditions is
V = (12.3 mol) (0.08206 L•atm/(mol•°K)) (223.15 °K) / (0.735 atm)
V ≈ 306 L

Try asking the Studen AI a question.

It will provide an instant answer!

FREE