Chemistry : asked on shred360
 05.06.2023

Consider an experimental setup with two compartments separated by a phospholipid bilayer membrane containing ion channels selectively permeable only to chloride ions. The left compartment (also called inside) contains 1 mM Cl- and the right compartment (also called outside) contains 100 mM Cl-. What will the electrical potential be when the system attains equilibrium

. 2

Step-by-step answer

24.06.2023, solved by verified expert
Unlock the full answer

This question is incomplete, the complete question is;

Consider an experimental setup with two compartments separated by a phospholipid bilayer membrane containing ion channels selectively permeable only to chloride ions. The left compartment (also called inside) contains 1 mM Cl- and the right compartment (also called outside) contains 100 mM Cl-. What will the electrical potential be when the system attains equilibrium? [ assume body temperature; log 100 = 2, log 10 = 1, log 1 = 0, log 0.1 = -1, log 0.01 = -2]

Options;

a) -62 mV

b) -124 mV

c) +62 mV

d) 0 mV

e) +124 mV

the electrical potential be when the system attains equilibrium is  –124mV

Option b) –124mV is the correct answer

Explanation:

Given the data in the question;

Two compartments are divided by lipid bilayer;

In inside compartment Cl- ion concentration- 1mM and out side of the cell concentration is 100mM

now we apply the Nernst equilibrium potential equation;

Chlorine ion valency is z = –1

So

Consider an experimental setup with two compartments, №17886585, 05.06.2023 13:06 = 62/z × log(ion outside/ ion inside) [for Cl‐ ions]

Consider an experimental setup with two compartments, №17886585, 05.06.2023 13:06 = (62 / –1) x log(  100 / 1 )

 Consider an experimental setup with two compartments, №17886585, 05.06.2023 13:06 = -62 x 2 =

Consider an experimental setup with two compartments, №17886585, 05.06.2023 13:06  = –124mV

Therefore, the electrical potential be when the system attains equilibrium is  –124mV

Option b) –124mV is the correct answer

It is was helpful?

Faq

Chemistry
Step-by-step answer
P Answered by PhD

This question is incomplete, the complete question is;

Consider an experimental setup with two compartments separated by a phospholipid bilayer membrane containing ion channels selectively permeable only to chloride ions. The left compartment (also called inside) contains 1 mM Cl- and the right compartment (also called outside) contains 100 mM Cl-. What will the electrical potential be when the system attains equilibrium? [ assume body temperature; log 100 = 2, log 10 = 1, log 1 = 0, log 0.1 = -1, log 0.01 = -2]

Options;

a) -62 mV

b) -124 mV

c) +62 mV

d) 0 mV

e) +124 mV

the electrical potential be when the system attains equilibrium is  –124mV

Option b) –124mV is the correct answer

Explanation:

Given the data in the question;

Two compartments are divided by lipid bilayer;

In inside compartment Cl- ion concentration- 1mM and out side of the cell concentration is 100mM

now we apply the Nernst equilibrium potential equation;

Chlorine ion valency is z = –1

So

E_{eq} = 62/z × log(ion outside/ ion inside) [for Cl‐ ions]

E_{eq} = (62 / –1) x log(  100 / 1 )

 E_{eq} = -62 x 2 =

E_{eq}  = –124mV

Therefore, the electrical potential be when the system attains equilibrium is  –124mV

Option b) –124mV is the correct answer

Chemistry
Step-by-step answer
P Answered by Specialist
Answer: b. Fiona is correct because the diagram shows two individual simple machines.

Explanation:
A mechanical device using which we can change the direction or magnitude of force applied is known as simple machine.
For example, in the given diagram there are two individual simple machines.
The machine helps in changing the direction or magnitude of force applied by the man. As a result, it becomes easy for him to carry different things easily from one place to another.
Thus, we can conclude that the statement Fiona is correct because the diagram shows two individual simple machines, is correct.
Answer: b. Fiona is correct because the diagram shows two individual simple machines.

Explanation
Chemistry
Step-by-step answer
P Answered by PhD

Answer:

Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N2 gas at 328K and 0.884 atm is 26.07 L.

An ideal gas is a theoretical gas that is considered to be composed of point particles that move randomly and do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.

The pressure, P, the temperature, T, and the volume, V, of an ideal gas, are related by a simple formula called the ideal gas law:  

P×V = n×R×T

where P is the gas pressure, V is the volume that occupies, T is its temperature, R is the ideal gas constant, and n is the number of moles of the gas. The universal constant of ideal gases R has the same value for all gaseous substances.

Explanation:

In this case, you know:

P= 0.884 atm

V= ?

n= Answer:Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N 0.857 moles (where 28 g/mole is the molar mass of N₂, that is, the amount of mass that the substance contains in one mole.)

R=0.082Answer:Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N

T= 328 K

Replacing in the ideal gas law:

0.884 atm×V= 0.857 moles× 0.082Answer:Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N ×328 K

Solving:

Answer:Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N

V= 26.07 L

The volume of a container that contains 24.0 grams of N2 gas at 328K and 0.884 atm is 26.07 L.

Chemistry
Step-by-step answer
P Answered by PhD
15 moles.Explanation:Hello,In this case, the undergoing chemical reaction is:Clearly, since carbon and oxygen are in a 1:1 molar ratio, 15 moles of carbon will completely react with 15 moles of oxygen, therefore 15 moles of oxygen remain as leftovers. In such a way, since carbon and carbon dioxide are also in a 1:1 molar ratio, the theoretical yield of carbon dioxide is 15 moles based on the stoichiometry:Best regards.
Chemistry
Step-by-step answer
P Answered by PhD
Answer: 7.8125 g
Explanation: Given:
Original amount (N₀) = 500 g
Number of half-lives (n) = 9612/1602 = 6
Amount remaining (N) = ?
N = 1/2ⁿ × N₀
N = 1/2^6 × 500
N = 0.015625 × 500
N = 7.8125 g
Chemistry
Step-by-step answer
P Answered by PhD
Answer: The product formed is potassium chloride.
Explanation:
Precipitation reaction is defined as the chemical reaction in which an insoluble salt is formed when two solutions are mixed containing soluble substances. The insoluble salt settles down at the bottom of the reaction mixture.

The chemical equation for the reaction of potassium phosphate and magnesium chloride follows (look at the picture)

2 moles of aqueous solution of potassium phosphate reacts with 3 moles of aqueous solution of magnesium chloride to produce 1 mole of solid magnesium phosphate and 6 moles of aqueous solution of potassium chloride.
Answer: The product formed is potassium chloride.
Explanation:
Precipitation reaction is defined a
Chemistry
Step-by-step answer
P Answered by PhD
Answer: B. carbon tetrachloride, CCI4
Explanation: The other options are incorrect. Let's write the correct formulas:
A. Diarsenic pentoxide - As2O5
C. Sodium dichromate - Na2Cr2O7
D. magnesium phosphide - Mg3P2
Chemistry
Step-by-step answer
P Answered by PhD
Answer: a. basic
b. basic
c. acidic
d. neutral

Explanation: Acids and bases can be classified in terms of hydrogen ions or hydroxide ions, or in terms of electron pairs. (look at the picture)
Let us note that from the pH scale, a pH of;
0 - 6.9 is acidic
7 is neutral
8 - 14 is basic

But pH= - log [H^+]
pOH = -log [OH^-]
Then;
pH + pOH = 14
Hence;
pH = 14 - pOH

a. [H+] = 6.0 x 10-10M
pH= 9.22 is basic
b. [OH-] = 30 × 10-2M
pH = 13.5 is basic
C. IH+1 = 20× 10-7M
pH = 0.56 is acidic
d. [OH-] = 1.0 x 10-7M
pH = 7 is neutral
Answer: a. basic
b. basic
c. acidic
d. neutral

Explanation: Acids and bases can be classified
Chemistry
Step-by-step answer
P Answered by PhD
Answer: -166.67 degrees Celsius.
Explanation: The equation of state of an ideal gas, also called the Mendeleev-Clapeyron equation, has the form: PV = nRT, where P is the density of the gas, V is the volume of the gas, n is the molar mass of the gas, T is the temperature of the gas, R is the universal gas constant = 8.314 J/(mol*K)
The gas temperature at a pressure of P = 978 mm. mercury column, molar mass n = 3.7 mol, and volume V = 25.12 liters is -166.67 degrees Celsius.
Chemistry
Step-by-step answer
P Answered by PhD
Answer: B. 7.2 x 10(23rd power)
Explanation:
Avogadro's number is defined as the number of particles found in an amount of substance per mole. It is the factor that relates the moles of a substance to the mass of that substance. We will use Avogadro's number to calculate the number of moles of water. as follows:
Avogadro's number = 1 mol = 6.022 x 10^23 particles.
we will use the conversion factor to calculate the number of moles of water:
1.20 = N x (1mol/6.022x10^23 particles)
N = 1.20/(1mol/6.022x10^23 particles)
N = 7.2 x 10(23rd power)

Try asking the Studen AI a question.

It will provide an instant answer!

FREE