sign C, sign B, sign A
Step-by-step explanation:
Given the vertices of triangular post A as (2, 2) , (2, 12) , and (17, 7). Let us find the length of side of the post using the formula for calculating distance between 2 points using the formula:
D = √(y₂-y₁)²+(x₂-x₁)²
For the coordinate (2, 2) , (2, 12)
S₁ = √(12-2)²+(2-2)²
S₁ = √(10)²+(0)²
S₁ = √100
S₁ = 10
For the coordinate (2, 2) , (17, 7)
S₂ = √(7-2)²+(17-2)²
S₂ = √(5)²+(15)²
S₂ = √25+225
S₂ = √250
S₂ = 15.8
For the coordinate (2, 12) , (17, 7)
S₃ = √(7-12)²+(17-2)²
S₃ = √(-5)²+(15)²
S₃ = √25+225
S₃ = √250
S₃ = 15.8
Perimeter of sign A = S₁+S₂+S₃
Perimeter of sign A = 10+15.8+15.8
Perimeter of sign A = 41.6
FOR SIGN B with coordinate of vertices (4,4),(11, 19) and (18, 4)
For the coordinate (4, 4) , (11, 19)
S₁ = √(19-4)²+(11-4)²
S₁ = √(15)²+(7)²
S₁ = √225+49
S₁ = 16.6
For the coordinate (4, 4) , (18, 4)
S₂ = √(4-4)²+(18-4)²
S₂ = √(0)²+(14)²
S₂ = √196
S₂ = 14
For the coordinate (11, 19) , (18, 4)
S₃ = √(4-19)²+(18-11)²
S₃ = √(-15)²+(7)²
S₃ = √225+49
S₃ = 16.6
Perimeter of sign B = S₁+S₂+S₃
Perimeter of sign B = 14+16.6+16.6
Perimeter of sign B = 47.2
FOR SIGN C with coordinate of vertices (4, 8), (24, 1) , and (24, 15)
For the coordinate (4, 8) , (24, 1)
S₁ = √(1-8)²+(24-4)²
S₁ = √(-7)²+(20)²
S₁ = √49+400
S₁ = 21.2
For the coordinate (4, 8) , (24, 15)
S₂ = √(15-8)²+(24-4)²
S₂ = √(7)²+(20)²
S₂ = √49+400
S₂ = 21.2
For the coordinate (24, 1) , (24, 15)
S₃ = √(15-1)²+(24-24)²
S₃ = √(14)²+(0)²
S₃ = √196+0
S₃ = 14
Perimeter of sign C = S₁+S₂+S₃
Perimeter of sign C = 14+21.2+21.2
Perimeter of sign C = 56.4
Arranging in order from largest to smallest perimeter, Sign C(56.4), Sign B (47.2), sign A (41.6)