Mathematics : asked on melisa18
 06.05.2021

Which expression can be used to find AC

. 0

Step-by-step answer

09.07.2023, solved by verified expert

Faq

Physics
Step-by-step answer
P Answered by PhD

a) Δx₂ = 31*Δt

b) Δx₁ = 977.5 / a

c) a = 23 / Δt

e) Δx₁ = 42.5*Δt

g) Δt = 0.0565 h

i) a = 0.05 m/s²

Explanation:

Given

v₁ = 54 Mi/h

v₂ = 31 Mi/h

a)  We apply the formula

Δx₂ = v₂*Δt

⇒  Δx₂ = 31*Δt  (Assuming constant speed)

b) We use the formula

v₂² = v₁² - 2*a*Δx₁    ⇒   Δx₁ = (v₁² - v₂²) / (2*a)

⇒   Δx₁ = (54² - 31²) / (2*a)

⇒   Δx₁ = 977.5 / a

c) We use the equation

v₂ = v₁ - a*Δt   ⇒   a = (v₁ - v₂) / Δt

⇒   a = (54 - 31) / Δt

⇒   a = 23 / Δt

e)  We apply the formula

Δx₁ = v₁*Δt - 0.5*a*Δt²

Δx₁ = 54*Δt - 0.5*(23 / Δt)*Δt²

⇒   Δx₁ = 42.5*Δt

g) If   Δx₁ = 2.4 Mi    ⇒   2.4 = 42.5*Δt  ⇒   Δt = 0.0565 h

i) If  a = 23 / Δt  ⇒   a = 23 Mi / 0.0565 h = 407.29 Mi/h²

⇒   a = 0.05 m/s²

Physics
Step-by-step answer
P Answered by PhD

a) Δx₂ = 31*Δt

b) Δx₁ = 977.5 / a

c) a = 23 / Δt

e) Δx₁ = 42.5*Δt

g) Δt = 0.0565 h

i) a = 0.05 m/s²

Explanation:

Given

v₁ = 54 Mi/h

v₂ = 31 Mi/h

a)  We apply the formula

Δx₂ = v₂*Δt

⇒  Δx₂ = 31*Δt  (Assuming constant speed)

b) We use the formula

v₂² = v₁² - 2*a*Δx₁    ⇒   Δx₁ = (v₁² - v₂²) / (2*a)

⇒   Δx₁ = (54² - 31²) / (2*a)

⇒   Δx₁ = 977.5 / a

c) We use the equation

v₂ = v₁ - a*Δt   ⇒   a = (v₁ - v₂) / Δt

⇒   a = (54 - 31) / Δt

⇒   a = 23 / Δt

e)  We apply the formula

Δx₁ = v₁*Δt - 0.5*a*Δt²

Δx₁ = 54*Δt - 0.5*(23 / Δt)*Δt²

⇒   Δx₁ = 42.5*Δt

g) If   Δx₁ = 2.4 Mi    ⇒   2.4 = 42.5*Δt  ⇒   Δt = 0.0565 h

i) If  a = 23 / Δt  ⇒   a = 23 Mi / 0.0565 h = 407.29 Mi/h²

⇒   a = 0.05 m/s²

Computers and Technology
Step-by-step answer
P Answered by Master

Here is the Python program:

import re  # module for regular expressions

search_string='''This is a string to search for a regular expression like regular expression or  regular-expression or regular:expression or regular&expression'''  #string to search for a regular expression

pattern = "regular.expression" #Assigns the regular expression to pattern

substitution="regular expression"  #substitute all occurrences of pattern with regular expression string stored in substitution  

replace_results = re.sub(pattern,substitution,search_string)  # sub() method from the re package to substitute all occurrences of the pattern with substitution

print(replace_results) #Assigns the outcome of the sub() method to this variable

Explanation:

This is a string to search for a regular expression like regular expression or regular-expression or regular:expression or regular&expression

search_string='''This is a string to search for a regular expression like regular expression or  regular-expression or regular:expression or regular&expression'''

The following statement assigns the regular expression to a variable named pattern .

pattern = "regular.expression"

The following statement is used to substitute the pattern (regular expression) in the search_string by replacing all occurrences of "regular expression" sub-string on search_string.

substitution="regular expression"  

The following statement uses re.sub() method to replace all the occurrences of a pattern with another sub string ("regular expression"). This means in search_string, the sub strings like regular expression, regular-expression, regular:expression or regular&expression are replaced with string "regular expression". This result is stored in replace_results variable. Three arguments are passed to re.sub() method:

sub string to replace  i.e. pattern

sub string to replace with  i.e. substitution

The actual string i.e. search_string

replace_results = re.sub(pattern,substitution,search_string)  

The following print statement displays the output of replace_results

print(replace_results)

The output of the above program is:

This is a string to search for a regular expression like regular expression or regular expression or regular expression or regular expression


Regular Expression Replace Challenge

In this challenge you will use the file regex_replace_challeng
Mathematics
Step-by-step answer
P Answered by PhD

  7(b^2 -2)(b^2 +2)

Step-by-step explanation:

Factoring the common factor 7 from both terms, you get the difference of squares. That can also be factored.

  v = 7(b^4 -4) = 7(b^2 -2)(b^2 +2)

The difference b^2-2 will have irrational factors, so does not meet the problem requirements. This is the factorization over integers.

Try asking the Studen AI a question.

It will provide an instant answer!

FREE