22.09.2020

# Baseballs pitched by a machine have a horizontal velocity of 30 meters/second. the machine accelerates the baseball from 0 meters/second to 30 meters/second in 0.5 seconds. if a baseball has a mass of 0.15 kilograms, the force the machine exerts is newtons. use f = ma, where a= v-u/t.

34

17.02.2022, solved by verified expert

using the formula

F = ma

Where F is the force applied by the machine

A is the acceleration which is also equal to v/t where v is the velocity and t is time

M is the mass

F = mv/t

F = (0.15kg) (30 – 0 m/s)/ 0.5 s

F = 9 N

## Video explanation

### Faq

Biology

This can be solve using the second law of Newtons, where the equation is :

F = ma

Where a = v /t

F = m (v / t)

Where F is the force applied

M is the mass

V is the velocity

T is the time

F = (0.15 kg) ( 30 m/s / 0.5 s)

F = 9 N

Biology

This can be solve using the second law of Newtons, where the equation is :

F = ma

Where a = v /t

F = m (v / t)

Where F is the force applied

M is the mass

V is the velocity

T is the time

F = (0.15 kg) ( 30 m/s / 0.5 s)

F = 9 N

Physics

F = 9 N

Explanation:

As we know that the acceleration of ball is given as rate of change in velocity of the object

so here we will have

here we know that

now we will have

now in order to find the force we will use Newton's II law which is given as

now by above formula we have

Physics
The acceleration of the baseball is:

where and are the final and initial speed of the ball, and is the time interval in which the force acted.

Replacing the numbers, we get

And at this point, we can use Newton's second law F=ma to find the value of the force of the pitching machine:
Physics
Options:
a. 0.08 meters
b. 0.16 meters
c. 0.32 meters
d. 1.8 meters

b. 0.16 meters

Explanation:
In the picture
Physics
Answer: Option B and C are True.

Explanation:
The weight of the two blocks acts downwards.
Let the weight of the two blocks be W. Solving for T₁ and T₂:
w = T₁/cos 60° -----(1);
w = T₂/cos 30° ----(2);
equating (1) and (2)
T₁/cos 60° = T₂/cos 30°;
T₁ cos 30° = T₂ cos 60°;
T₂/T₁ = cos 30°/cos 60°;
T₂/T₁ =1.73.
Therefore, option a is false since T₂ > T₁.
Option B is true since T₁ cos 30° = T₂ cos 60°.
Option C is true because the T₃ is due to the weight of the two blocks while T₄ is only due to one block.
Option D is wrong because T₁ + T₂ > T₃ by simple summation of the two forces, except by vector addition.
Physics

Option D

Step-by-step explanation:

D.
Heat each cube to the same temperature, place each cube into different containers with 500 grams of water at the same temperature, and measure the temperature of the water.

Physics

see below.

Step-by-step explanation:

To solve this problem, we can use the conservation of energy and conservation of momentum principles.

Conservation of energy:

The total initial energy is the rest energy of the proton and neutron, which is given by:

Ei = (mp + mn)c^2

where mp and mn are the masses of the proton and neutron, respectively, and c is the speed of light.

The total final energy is the rest energy of the deuteron plus the energy of the gamma ray, which is given by:

Ef = (md)c^2 + Eg

where md is the mass of the deuteron and Eg is the energy of the gamma ray.

According to the conservation of energy principle, the initial energy and final energy must be equal, so we have:

Ei = Ef

(mp + mn)c^2 = (md)c^2 + Eg

Conservation of momentum:

The total initial momentum is zero because the proton and neutron are at rest. The total final momentum is the momentum of the deuteron and the momentum of the gamma ray. Since the gamma ray is massless, its momentum is given by:

pg = Eg/c

where pg is the momentum of the gamma ray.

According to the conservation of momentum principle, the total final momentum must be equal to zero, so we have:

0 = pd + pg

where pd is the momentum of the deuteron.

Solving for md and pd:

From the conservation of energy equation, we can solve for md:

md = (mp + mn - Eg/c^2)/c^2

Substituting this expression into the conservation of momentum equation, we get:

pd = -pg = -Eg/c

Substituting the given values, we have:

mp = 1.6726 × 10^-27 kg mn = 1.6749 × 10^-27 kg Eg = 2.2 × 10^6 eV = 3.52 × 10^-13 J

Using c = 2.998 × 10^8 m/s, we get:

md = (1.6726 × 10^-27 kg + 1.6749 × 10^-27 kg - 3.52 × 10^-13 J/(2.998 × 10^8 m/s)^2)/(2.998 × 10^8 m/s)^2 = 3.3435 × 10^-27 kg

pd = -Eg/c = -(3.52 × 10^-13 J)/(2.998 × 10^8 m/s) = -1.1723 × 10^-21 kg·m/s

Therefore, the mass of the deuteron is 3.3435 × 10^-27 kg, and its momentum is -1.1723 × 10^-21 kg·m/s.

Physics

9.6 meters

Step-by-step explanation:

Time taken by the tomatoes to each the ground

using h = 1/2 g t^2

t^2 = 2h/g = 2 x 50/ 9.8 = 10.2

t = 3.2 sec

horizontal ditance = speed x time = 3 x 3.2 = 9.6 meters

Physics