Physics : asked on kwalker36535
 02.12.2022 the following question

A 60 kg swimmer at a water park enters a pool using a 2 m high slide.
(A). Find the velocity of the swimmer at the bottom of the slide
(B). Determine the height of the slide when the swimmer is moving 5 m/s.
(C).Determine the speed of the swimmer when the height of the slide is 0.8 m.

. 2

Step-by-step answer

02.12.2022, solved by verified expert
Unlock the full answer
1 students found this answer . helpful


see below

Step-by-step explanation:

using energy conservation law 


kinetic energy = potential energy 

1/2 mv^2   = mgh 

v^2 = 2gh or h = v^2 / 2g

a) v = sqrt(2gh) = sqrt(2*9.8*2) = sqrt(39.2) = 6.26 m/s

b) h = v^2 / 2g = 5^2 / 2*9.8 = 25/19.6 = 1.27 m 

c) v = sqrt(2gh) = sqrt(2*9.8*0.8) = sqrt(15.68) =  3.95 m/s

It is was helpful?


Step-by-step answer
P Answered by PhD
7.25 secs.

First find the distance it takes to stop
s = [v^2-u^2]/2a = 0^2 - 8.7^2/2[-2.4] = 8.7^2/4.8
Next find the time it takes to go that distance , s = ut +[1/2] at^2
8.7^2/4.8 = 8.7t +[1/2] [ -2.4]t^2 , rearrange and
t^2 -[8.7/1.2]+ 8.7^2/[(1.2)(4.8)]=0 complete the square
[t - (8.7/2.4)]^2=0
t = 8.7/2.4 = 3.625 secs
At this stage the deceleration will push the object back in the direction it came from for another 3.625 secs when it will be 8.7 m/s again
Total time , T =2t = 7.25 secs.

The term differential is used in calculus to refer to an infinitesimal (infinitely small) change in some varying quantity. For example, if x is a variable, then a change in the value of x is often denoted Δx (pronounced delta x). The differential dx represents an infinitely small change in the variable x.
Step-by-step answer
P Answered by PhD
First sum applied the Newton's second law motion: F = ma
Force = mass* acceleration
This motion define force as the product of mass times Acceleration (vs.Velocity). Since acceleration is the change in velocity divided by time,
such that, (mass*velocity)/time=momentum/time
Therefore we get mass*velocity=momentum
Elephant mass=6300 kg; velocity=0.11 m/s
P=693 kg (m/s)
Dolphin mass=50 kg; velocity=10.4 m/s
P=520 kg (m/s)
The elephant has more momentum(P) because it is large.
Step-by-step answer
P Answered by PhD
The change in temperature is 9.52°CExplanation:Since, the heat supplied by the electric kettle is totally used to increase the temperature of the water.Thus, from the law of conservation of energy can be stated as:Heat Supplied by Electric Kettle = Heat Absorbed by WaterHeat Supplied by Electric Kettle = m C ΔTwhere,Heat Supplied by Electric Kettle = 20,000 JMass of water = m = 0.5 kgSpecific Heat Capacity of Water = C = 4200 J/kg.°CChange in Temperature of Water = ΔTTherefore,20,000 J = (0.5 kg)(4200 J/kg.°C) ΔTΔT = 20,000 J/(2100 J/°C)ΔT = 9.52°C
Step-by-step answer
P Answered by PhD
Weight of barbell (m) = 100 kg
Uplifted to height (h) = 2m
Time taken= 1.5 s
Work done by Jordan = potential energy stored in barbell = mgh
= 100×2×9.8
= 1960J
Power = energy/time
= 1960/1.5
Step-by-step answer
P Answered by PhD
Weight of jasmine (m) = 400 N
Height climbed on wall (h) = 5m
Total time taken in climbing = 5 sec
Work done in climbing the wall = rise in potential energy = mgh
= 400×9.8×51
= 19600J
Power generated by Jasmine = potential energy / time
= 19600/5
= 3920Watts
Step-by-step answer
P Answered by PhD
The horizontal and vertical motions of balloons are independent from each other.
Let vertical component of initial velocity U' horizontal component of initial velocity U"
Time of landing (t) is found with the help of vertical motion.
Since vertical component of initial velocity of balloon is zero(U' = 0)
From equation h = U't + 1/2gt^2
h = 1/2gt^2
t = √(2h/g)
t = √( 2×150/9.8)
t = 5.53 sec
Horizontal velocity = 50m/s
Horizontal range of balloon, R = U"t
= 50× 5.53
= 27.65m
So the balloon will go 27.65 metre away from the bridge
Step-by-step answer
P Answered by PhD
Gravity acceleration (g) = 9.8m/s^2
Time (t) = 3sec
Acceleration = velocity/time
Velocity = acceleration×time
= 9.8×3
= 29.4m/s
Step-by-step answer
P Answered by PhD
Initial velocity (u) = 0
Time taken = 4.5 seconds
Gravitational acceleration (g) = 9.8m/s^2
By the second equation of motion under gravity,
The distance that object fell down (h)
h = ut + (1/2)gt^2
h = 0×4.5 + (1/2)×9.8×(4.5)^2
h = 99.225 m
Step-by-step answer
P Answered by PhD
Gravitational acceleration (g) = 9.8m/s^2
Time of flight = 12 seconds
Acceleration = velocity/time
Velocity = acceleration × time
= 9.8×12
= 117.6 m/s
Step-by-step answer
P Answered by PhD
Convection occurs when the water becomes less dense and rises to the top as it warms, creating convection currents. When heater warms up the water around it, the water rises to the top and displaces cooler water, which is denser so it sinks lower.