Physics : asked on gamerdoesart
 02.07.2021

Carousel conveyors are used for storage and order picking for small parts. The conveyorsrotate clockwise or counterclockwise, as necessary, to position storage bins at the storageand retrieval point. The conveyors are closely spaced, such that the operators travel timebetween conveyors is negligible. The conveyor rotation time for each item equals 1 minute;the time required for the operator to retrieve an item after the conveyor stops rotatingequals 0.25 minute. How many carousel conveyors can one operator tend without creatingidle time on the part of the conveyors

. 0

Step-by-step answer

24.06.2023, solved by verified expert
Unlock the full answer
1 students found this answer . helpful

the number of carousel conveyors that an operator can operate without any idle time is 5

Explanation:

Given the data in the question;

first we express the equation for number of carousel conveyors that can be operated by an operator;

n' = Carousel conveyors are used for storage and order, №17886201, 02.07.2021 05:44

where a is the concurrent activity time ( 0.25 minute )

b is the independent operator activity time

t is the independent machine activity time( 1 )

Now independent activity time is zero as the operator is not performing any inspection or packaging tasks.

So time taken for the operator to retrieve the finished item at the end of the process is the concurrent activity and independent machine activity time, the conveyor rotation time of each item

so

we substitute

0.25min for a, 1 for t and 0min for b

n' = Carousel conveyors are used for storage and order, №17886201, 02.07.2021 05:44

n' = 1.25 min / 0.25

n' - 5

Therefore, the number of carousel conveyors that an operator can operate without any idle time is 5

It is was helpful?

Faq

Physics
Step-by-step answer
P Answered by PhD

the number of carousel conveyors that an operator can operate without any idle time is 5

Explanation:

Given the data in the question;

first we express the equation for number of carousel conveyors that can be operated by an operator;

n' = \frac{(a + t)}{( a + b)}

where a is the concurrent activity time ( 0.25 minute )

b is the independent operator activity time

t is the independent machine activity time( 1 )

Now independent activity time is zero as the operator is not performing any inspection or packaging tasks.

So time taken for the operator to retrieve the finished item at the end of the process is the concurrent activity and independent machine activity time, the conveyor rotation time of each item

so

we substitute

0.25min for a, 1 for t and 0min for b

n' = \frac{(0.25min + 1min)}{( 0.25min+ 0 min)}

n' = 1.25 min / 0.25

n' - 5

Therefore, the number of carousel conveyors that an operator can operate without any idle time is 5

Physics
Step-by-step answer
P Answered by Master

Answer:

see below.

Step-by-step explanation:

To solve this problem, we can use the conservation of energy and conservation of momentum principles.

Conservation of energy:

The total initial energy is the rest energy of the proton and neutron, which is given by:

Ei = (mp + mn)c^2

where mp and mn are the masses of the proton and neutron, respectively, and c is the speed of light.

The total final energy is the rest energy of the deuteron plus the energy of the gamma ray, which is given by:

Ef = (md)c^2 + Eg

where md is the mass of the deuteron and Eg is the energy of the gamma ray.

According to the conservation of energy principle, the initial energy and final energy must be equal, so we have:

Ei = Ef

(mp + mn)c^2 = (md)c^2 + Eg

Conservation of momentum:

The total initial momentum is zero because the proton and neutron are at rest. The total final momentum is the momentum of the deuteron and the momentum of the gamma ray. Since the gamma ray is massless, its momentum is given by:

pg = Eg/c

where pg is the momentum of the gamma ray.

According to the conservation of momentum principle, the total final momentum must be equal to zero, so we have:

0 = pd + pg

where pd is the momentum of the deuteron.

Solving for md and pd:

From the conservation of energy equation, we can solve for md:

md = (mp + mn - Eg/c^2)/c^2

Substituting this expression into the conservation of momentum equation, we get:

pd = -pg = -Eg/c

Substituting the given values, we have:

mp = 1.6726 × 10^-27 kg mn = 1.6749 × 10^-27 kg Eg = 2.2 × 10^6 eV = 3.52 × 10^-13 J

Using c = 2.998 × 10^8 m/s, we get:

md = (1.6726 × 10^-27 kg + 1.6749 × 10^-27 kg - 3.52 × 10^-13 J/(2.998 × 10^8 m/s)^2)/(2.998 × 10^8 m/s)^2 = 3.3435 × 10^-27 kg

pd = -Eg/c = -(3.52 × 10^-13 J)/(2.998 × 10^8 m/s) = -1.1723 × 10^-21 kg·m/s

Therefore, the mass of the deuteron is 3.3435 × 10^-27 kg, and its momentum is -1.1723 × 10^-21 kg·m/s.

Physics
Step-by-step answer
P Answered by PhD

Answer:

9.6 meters

Step-by-step explanation:

Time taken by the tomatoes to each the ground

using h = 1/2 g t^2 

t^2 = 2h/g = 2 x 50/ 9.8 = 10.2

t = 3.2 sec 

horizontal ditance = speed x time = 3 x 3.2 = 9.6 meters

Physics
Step-by-step answer
P Answered by PhD
First sum applied the Newton's second law motion: F = ma
Force = mass* acceleration
This motion define force as the product of mass times Acceleration (vs.Velocity). Since acceleration is the change in velocity divided by time,
force=(mass*velocity)/time
such that, (mass*velocity)/time=momentum/time
Therefore we get mass*velocity=momentum
Momentum=mass*velocity
Elephant mass=6300 kg; velocity=0.11 m/s
Momentum=6300*0.11
P=693 kg (m/s)
Dolphin mass=50 kg; velocity=10.4 m/s
Momentum=50*10.4
P=520 kg (m/s)
The elephant has more momentum(P) because it is large.
Physics
Step-by-step answer
P Answered by PhD
The change in temperature is 9.52°CExplanation:Since, the heat supplied by the electric kettle is totally used to increase the temperature of the water.Thus, from the law of conservation of energy can be stated as:Heat Supplied by Electric Kettle = Heat Absorbed by WaterHeat Supplied by Electric Kettle = m C ΔTwhere,Heat Supplied by Electric Kettle = 20,000 JMass of water = m = 0.5 kgSpecific Heat Capacity of Water = C = 4200 J/kg.°CChange in Temperature of Water = ΔTTherefore,20,000 J = (0.5 kg)(4200 J/kg.°C) ΔTΔT = 20,000 J/(2100 J/°C)ΔT = 9.52°C
Physics
Step-by-step answer
P Answered by PhD
Weight of barbell (m) = 100 kg
Uplifted to height (h) = 2m
Time taken= 1.5 s
Work done by Jordan = potential energy stored in barbell = mgh
= 100×2×9.8
= 1960J
Power = energy/time
= 1960/1.5
1306.67watts
Physics
Step-by-step answer
P Answered by PhD
Weight of jasmine (m) = 400 N
Height climbed on wall (h) = 5m
Total time taken in climbing = 5 sec
Work done in climbing the wall = rise in potential energy = mgh
= 400×9.8×51
= 19600J
Power generated by Jasmine = potential energy / time
= 19600/5
= 3920Watts
Physics
Step-by-step answer
P Answered by PhD
The horizontal and vertical motions of balloons are independent from each other.
Let vertical component of initial velocity U' horizontal component of initial velocity U"
Time of landing (t) is found with the help of vertical motion.
Since vertical component of initial velocity of balloon is zero(U' = 0)
From equation h = U't + 1/2gt^2
h = 1/2gt^2
t = √(2h/g)
t = √( 2×150/9.8)
t = 5.53 sec
Horizontal velocity = 50m/s
Horizontal range of balloon, R = U"t
= 50× 5.53
= 27.65m
So the balloon will go 27.65 metre away from the bridge

Try asking the Studen AI a question.

It will provide an instant answer!

FREE