30.05.2021

Select the THREE ways that the parallel-plate capacitor differs from a car battery. 1. battery is capable of continuous current, capacitor is not

2. battery maintains a potential, capacitor does not

3. battery stores chemical energy, capacitor stores electric energy

4. capacitor stores chemical energy, battery stores electric energy

. 0

Step-by-step answer

24.06.2023, solved by verified expert
Unlock the full answer
6 students found this answer . helpful

1. battery is capable of continuous current, capacitor is not

2. battery maintains a potential, capacitor does not

3. battery stores chemical energy, capacitor stores electric energy

Explanation:

1. battery is capable of continuous current, capacitor is not

This is because the battery maintains a constant current throughout while the capacitor maintains an exponential decaying current.

2. battery maintains a potential, capacitor does not

This is because, the battery has a potential at its terminal due to its emf whereas, the capacitor needs a potential to be applied to its terminals.

3. battery stores chemical energy, capacitor stores electric energy

This is because, the battery converts chemical energy to electrical energy whereas, the capacitor stores electric energy due to its ability to store electric charge.

It is was helpful?

Faq

Physics
Step-by-step answer
P Answered by PhD

1. battery is capable of continuous current, capacitor is not

2. battery maintains a potential, capacitor does not

3. battery stores chemical energy, capacitor stores electric energy

Explanation:

1. battery is capable of continuous current, capacitor is not

This is because the battery maintains a constant current throughout while the capacitor maintains an exponential decaying current.

2. battery maintains a potential, capacitor does not

This is because, the battery has a potential at its terminal due to its emf whereas, the capacitor needs a potential to be applied to its terminals.

3. battery stores chemical energy, capacitor stores electric energy

This is because, the battery converts chemical energy to electrical energy whereas, the capacitor stores electric energy due to its ability to store electric charge.

Physics
Step-by-step answer
P Answered by Master

Answer:

see below.

Step-by-step explanation:

To solve this problem, we can use the conservation of energy and conservation of momentum principles.

Conservation of energy:

The total initial energy is the rest energy of the proton and neutron, which is given by:

Ei = (mp + mn)c^2

where mp and mn are the masses of the proton and neutron, respectively, and c is the speed of light.

The total final energy is the rest energy of the deuteron plus the energy of the gamma ray, which is given by:

Ef = (md)c^2 + Eg

where md is the mass of the deuteron and Eg is the energy of the gamma ray.

According to the conservation of energy principle, the initial energy and final energy must be equal, so we have:

Ei = Ef

(mp + mn)c^2 = (md)c^2 + Eg

Conservation of momentum:

The total initial momentum is zero because the proton and neutron are at rest. The total final momentum is the momentum of the deuteron and the momentum of the gamma ray. Since the gamma ray is massless, its momentum is given by:

pg = Eg/c

where pg is the momentum of the gamma ray.

According to the conservation of momentum principle, the total final momentum must be equal to zero, so we have:

0 = pd + pg

where pd is the momentum of the deuteron.

Solving for md and pd:

From the conservation of energy equation, we can solve for md:

md = (mp + mn - Eg/c^2)/c^2

Substituting this expression into the conservation of momentum equation, we get:

pd = -pg = -Eg/c

Substituting the given values, we have:

mp = 1.6726 × 10^-27 kg mn = 1.6749 × 10^-27 kg Eg = 2.2 × 10^6 eV = 3.52 × 10^-13 J

Using c = 2.998 × 10^8 m/s, we get:

md = (1.6726 × 10^-27 kg + 1.6749 × 10^-27 kg - 3.52 × 10^-13 J/(2.998 × 10^8 m/s)^2)/(2.998 × 10^8 m/s)^2 = 3.3435 × 10^-27 kg

pd = -Eg/c = -(3.52 × 10^-13 J)/(2.998 × 10^8 m/s) = -1.1723 × 10^-21 kg·m/s

Therefore, the mass of the deuteron is 3.3435 × 10^-27 kg, and its momentum is -1.1723 × 10^-21 kg·m/s.

Physics
Step-by-step answer
P Answered by PhD

Answer:

9.6 meters

Step-by-step explanation:

Time taken by the tomatoes to each the ground

using h = 1/2 g t^2 

t^2 = 2h/g = 2 x 50/ 9.8 = 10.2

t = 3.2 sec 

horizontal ditance = speed x time = 3 x 3.2 = 9.6 meters

Physics
Step-by-step answer
P Answered by PhD

The question specifies the diameter of the screw, therefore the IMA of this screw is 0.812? / 0.318 = 8.02

Physics
Step-by-step answer
P Answered by PhD
The change in temperature is 9.52°CExplanation:Since, the heat supplied by the electric kettle is totally used to increase the temperature of the water.Thus, from the law of conservation of energy can be stated as:Heat Supplied by Electric Kettle = Heat Absorbed by WaterHeat Supplied by Electric Kettle = m C ΔTwhere,Heat Supplied by Electric Kettle = 20,000 JMass of water = m = 0.5 kgSpecific Heat Capacity of Water = C = 4200 J/kg.°CChange in Temperature of Water = ΔTTherefore,20,000 J = (0.5 kg)(4200 J/kg.°C) ΔTΔT = 20,000 J/(2100 J/°C)ΔT = 9.52°C
Physics
Step-by-step answer
P Answered by PhD
Weight of barbell (m) = 100 kg
Uplifted to height (h) = 2m
Time taken= 1.5 s
Work done by Jordan = potential energy stored in barbell = mgh
= 100×2×9.8
= 1960J
Power = energy/time
= 1960/1.5
1306.67watts
Physics
Step-by-step answer
P Answered by PhD
Weight of jasmine (m) = 400 N
Height climbed on wall (h) = 5m
Total time taken in climbing = 5 sec
Work done in climbing the wall = rise in potential energy = mgh
= 400×9.8×51
= 19600J
Power generated by Jasmine = potential energy / time
= 19600/5
= 3920Watts
Physics
Step-by-step answer
P Answered by PhD
The horizontal and vertical motions of balloons are independent from each other.
Let vertical component of initial velocity U' horizontal component of initial velocity U"
Time of landing (t) is found with the help of vertical motion.
Since vertical component of initial velocity of balloon is zero(U' = 0)
From equation h = U't + 1/2gt^2
h = 1/2gt^2
t = √(2h/g)
t = √( 2×150/9.8)
t = 5.53 sec
Horizontal velocity = 50m/s
Horizontal range of balloon, R = U"t
= 50× 5.53
= 27.65m
So the balloon will go 27.65 metre away from the bridge
Physics
Step-by-step answer
P Answered by PhD
Gravity acceleration (g) = 9.8m/s^2
Time (t) = 3sec
Acceleration = velocity/time
Velocity = acceleration×time
= 9.8×3
= 29.4m/s

Try asking the Studen AI a question.

It will provide an instant answer!

FREE