12.11.2021

A motorcycle passes over the top of a hill that has a radius of curvature of 100 m. The mass of the motorcycle plus rider is 300 kg. The motorcycle is moving at a speed of 30 m/s. The surface exerts a normal force of magnitude FN on the motorcycle.The motorcycle passes over the top of the hill again but now is moving at a speed of 33 m/s. How does the new normal force exerted on the motorcycle compare to FN

. 0

Step-by-step answer

24.06.2023, solved by verified expert
Unlock the full answer

A motorcycle passes over the top of a hill that, №17887085, 12.11.2021 03:38

Explanation:

From the question we are told that

Radius of curvatureA motorcycle passes over the top of a hill that, №17887085, 12.11.2021 03:38

Mass A motorcycle passes over the top of a hill that, №17887085, 12.11.2021 03:38

initial Speed of Motorcycle  A motorcycle passes over the top of a hill that, №17887085, 12.11.2021 03:38

Final  Speed of Motorcycle  A motorcycle passes over the top of a hill that, №17887085, 12.11.2021 03:38

Generally the equation Force at initial speed is  mathematically given as

A motorcycle passes over the top of a hill that, №17887085, 12.11.2021 03:38

A motorcycle passes over the top of a hill that, №17887085, 12.11.2021 03:38

A motorcycle passes over the top of a hill that, №17887085, 12.11.2021 03:38

Generally the equation Force at Final speed is  mathematically given as

A motorcycle passes over the top of a hill that, №17887085, 12.11.2021 03:38

A motorcycle passes over the top of a hill that, №17887085, 12.11.2021 03:38

A motorcycle passes over the top of a hill that, №17887085, 12.11.2021 03:38

Therefore

A motorcycle passes over the top of a hill that, №17887085, 12.11.2021 03:38

It is was helpful?

Faq

Physics
Step-by-step answer
P Answered by PhD

F_NF_N'

Explanation:

From the question we are told that

Radius of curvaturer=100m

Mass M=300kg

initial Speed of Motorcycle  V_1=30m/s

Final  Speed of Motorcycle  V_2=33m/s

Generally the equation Force at initial speed is  mathematically given as

F_N=mg-\frac{mv^2}{R}

F_N=300*9.8-\frac{(300*30)^2}{100}

F_N=240N

Generally the equation Force at Final speed is  mathematically given as

F_N'=mg-\frac{mv'^2}{R}

F_N'=300*9.8-\frac{(300*33)^2}{100}

F_N'=-327N

Therefore

F_NF_N'

Physics
Step-by-step answer
P Answered by Specialist
Answer: Option B and C are True.

Explanation:
The weight of the two blocks acts downwards.
Let the weight of the two blocks be W. Solving for T₁ and T₂:
w = T₁/cos 60° -----(1);
w = T₂/cos 30° ----(2);
equating (1) and (2)
T₁/cos 60° = T₂/cos 30°;
T₁ cos 30° = T₂ cos 60°;
T₂/T₁ = cos 30°/cos 60°;
T₂/T₁ =1.73.
Therefore, option a is false since T₂ > T₁.
Option B is true since T₁ cos 30° = T₂ cos 60°.
Option C is true because the T₃ is due to the weight of the two blocks while T₄ is only due to one block.
Option D is wrong because T₁ + T₂ > T₃ by simple summation of the two forces, except by vector addition.
Answer: Option B and C are True.

Explanation:  
The weight of the two blocks acts downwards.
Le
Physics
Step-by-step answer
P Answered by Master

Answer:

see below.

Step-by-step explanation:

To solve this problem, we can use the conservation of energy and conservation of momentum principles.

Conservation of energy:

The total initial energy is the rest energy of the proton and neutron, which is given by:

Ei = (mp + mn)c^2

where mp and mn are the masses of the proton and neutron, respectively, and c is the speed of light.

The total final energy is the rest energy of the deuteron plus the energy of the gamma ray, which is given by:

Ef = (md)c^2 + Eg

where md is the mass of the deuteron and Eg is the energy of the gamma ray.

According to the conservation of energy principle, the initial energy and final energy must be equal, so we have:

Ei = Ef

(mp + mn)c^2 = (md)c^2 + Eg

Conservation of momentum:

The total initial momentum is zero because the proton and neutron are at rest. The total final momentum is the momentum of the deuteron and the momentum of the gamma ray. Since the gamma ray is massless, its momentum is given by:

pg = Eg/c

where pg is the momentum of the gamma ray.

According to the conservation of momentum principle, the total final momentum must be equal to zero, so we have:

0 = pd + pg

where pd is the momentum of the deuteron.

Solving for md and pd:

From the conservation of energy equation, we can solve for md:

md = (mp + mn - Eg/c^2)/c^2

Substituting this expression into the conservation of momentum equation, we get:

pd = -pg = -Eg/c

Substituting the given values, we have:

mp = 1.6726 × 10^-27 kg mn = 1.6749 × 10^-27 kg Eg = 2.2 × 10^6 eV = 3.52 × 10^-13 J

Using c = 2.998 × 10^8 m/s, we get:

md = (1.6726 × 10^-27 kg + 1.6749 × 10^-27 kg - 3.52 × 10^-13 J/(2.998 × 10^8 m/s)^2)/(2.998 × 10^8 m/s)^2 = 3.3435 × 10^-27 kg

pd = -Eg/c = -(3.52 × 10^-13 J)/(2.998 × 10^8 m/s) = -1.1723 × 10^-21 kg·m/s

Therefore, the mass of the deuteron is 3.3435 × 10^-27 kg, and its momentum is -1.1723 × 10^-21 kg·m/s.

Physics
Step-by-step answer
P Answered by PhD

Answer:

9.6 meters

Step-by-step explanation:

Time taken by the tomatoes to each the ground

using h = 1/2 g t^2 

t^2 = 2h/g = 2 x 50/ 9.8 = 10.2

t = 3.2 sec 

horizontal ditance = speed x time = 3 x 3.2 = 9.6 meters

Physics
Step-by-step answer
P Answered by PhD

The question specifies the diameter of the screw, therefore the IMA of this screw is 0.812? / 0.318 = 8.02

Physics
Step-by-step answer
P Answered by PhD
Answer:
7.25 secs.

Explanation:
First find the distance it takes to stop
s = [v^2-u^2]/2a = 0^2 - 8.7^2/2[-2.4] = 8.7^2/4.8
Next find the time it takes to go that distance , s = ut +[1/2] at^2
8.7^2/4.8 = 8.7t +[1/2] [ -2.4]t^2 , rearrange and
t^2 -[8.7/1.2]+ 8.7^2/[(1.2)(4.8)]=0 complete the square
[t - (8.7/2.4)]^2=0
t = 8.7/2.4 = 3.625 secs
At this stage the deceleration will push the object back in the direction it came from for another 3.625 secs when it will be 8.7 m/s again
Total time , T =2t = 7.25 secs.

Note:
The term differential is used in calculus to refer to an infinitesimal (infinitely small) change in some varying quantity. For example, if x is a variable, then a change in the value of x is often denoted Δx (pronounced delta x). The differential dx represents an infinitely small change in the variable x.
Physics
Step-by-step answer
P Answered by PhD
First sum applied the Newton's second law motion: F = ma
Force = mass* acceleration
This motion define force as the product of mass times Acceleration (vs.Velocity). Since acceleration is the change in velocity divided by time,
force=(mass*velocity)/time
such that, (mass*velocity)/time=momentum/time
Therefore we get mass*velocity=momentum
Momentum=mass*velocity
Elephant mass=6300 kg; velocity=0.11 m/s
Momentum=6300*0.11
P=693 kg (m/s)
Dolphin mass=50 kg; velocity=10.4 m/s
Momentum=50*10.4
P=520 kg (m/s)
The elephant has more momentum(P) because it is large.

Try asking the Studen AI a question.

It will provide an instant answer!

FREE