28.03.2020

A rotating paddle wheel is inserted in a closed pot of water. The stirring action of the paddle wheel heats the water. During the process, 30 kJ of heat is transferred to the water and 5 kJ is lost to the surrounding air. The paddle wheel work amounts to 500 J. Determine the final energy of the system if its initial energy is 10 kJ.

. 1

Step-by-step answer

24.06.2023, solved by verified expert
Unlock the full answer

the final energy of the system is 35.5 kJ.

Explanation:

Given;

initial energy of the system, E₁ = 10 kJ

heat transferred to the system, q₁  30 kJ

Heat lost to the surrounding, q₂ = 5kJ

heat gained by the system, Q = q₁ - q₂ = 30 kJ - 5kJ = 25 kJ

work done on the system, W = 500 J = 0.5 kJ

Apply first law of thermodynamic,

ΔU = Q + W

where;

ΔU  is change in internal energy

Q is the heat gained by the system

W is work done on the system

ΔU = 25kJ + 0.5 kJ

ΔU = 25.5 kJ

The final energy of the system is calculated as;

E₂ = E₁ + ΔU

E₂ = 10 kJ + 25.5 kJ

E₂ =  35.5 kJ.

Therefore, the final energy of the system is 35.5 kJ.

It is was helpful?

Faq

Physics
Step-by-step answer
P Answered by PhD

the final energy of the system is 35.5 kJ.

Explanation:

Given;

initial energy of the system, E₁ = 10 kJ

heat transferred to the system, q₁  30 kJ

Heat lost to the surrounding, q₂ = 5kJ

heat gained by the system, Q = q₁ - q₂ = 30 kJ - 5kJ = 25 kJ

work done on the system, W = 500 J = 0.5 kJ

Apply first law of thermodynamic,

ΔU = Q + W

where;

ΔU  is change in internal energy

Q is the heat gained by the system

W is work done on the system

ΔU = 25kJ + 0.5 kJ

ΔU = 25.5 kJ

The final energy of the system is calculated as;

E₂ = E₁ + ΔU

E₂ = 10 kJ + 25.5 kJ

E₂ =  35.5 kJ.

Therefore, the final energy of the system is 35.5 kJ.

Physics
Step-by-step answer
P Answered by Specialist
Options:
a. a lower frequency and a shorter wavelength.
b. a higher frequency and a longer wavelength.
c. a lower frequency and a longer wavelength.
d. a higher frequency and a shorter wavelength

Answer:
d. a higher frequency and a shorter wavelength

Explanation:
The frequency of a wave is inversely proportional to its wavelength. That means that waves with a high frequency have a short wavelength, while waves with a low frequency have a longer wavelength. Light waves have very, very short wavelengths.
For example, Gamma rays have the highest energies, the shortest wavelengths, and the highest frequencies. Radio waves, on the other hand, have the lowest energies, longest wavelengths, and lowest frequencies of any type of EM radiation.
Options:
a. a lower frequency and a shorter wavelength.
b. a higher frequency and a longer wavelen
Physics
Step-by-step answer
P Answered by Specialist
Answer: Option B and C are True.

Explanation:
The weight of the two blocks acts downwards.
Let the weight of the two blocks be W. Solving for T₁ and T₂:
w = T₁/cos 60° -----(1);
w = T₂/cos 30° ----(2);
equating (1) and (2)
T₁/cos 60° = T₂/cos 30°;
T₁ cos 30° = T₂ cos 60°;
T₂/T₁ = cos 30°/cos 60°;
T₂/T₁ =1.73.
Therefore, option a is false since T₂ > T₁.
Option B is true since T₁ cos 30° = T₂ cos 60°.
Option C is true because the T₃ is due to the weight of the two blocks while T₄ is only due to one block.
Option D is wrong because T₁ + T₂ > T₃ by simple summation of the two forces, except by vector addition.
Answer: Option B and C are True.

Explanation:  
The weight of the two blocks acts downwards.
Le
Physics
Step-by-step answer
P Answered by PhD

Answer:

9.6 meters

Step-by-step explanation:

Time taken by the tomatoes to each the ground

using h = 1/2 g t^2 

t^2 = 2h/g = 2 x 50/ 9.8 = 10.2

t = 3.2 sec 

horizontal ditance = speed x time = 3 x 3.2 = 9.6 meters

Physics
Step-by-step answer
P Answered by PhD

The question specifies the diameter of the screw, therefore the IMA of this screw is 0.812? / 0.318 = 8.02

Physics
Step-by-step answer
P Answered by PhD
Answer:
7.25 secs.

Explanation:
First find the distance it takes to stop
s = [v^2-u^2]/2a = 0^2 - 8.7^2/2[-2.4] = 8.7^2/4.8
Next find the time it takes to go that distance , s = ut +[1/2] at^2
8.7^2/4.8 = 8.7t +[1/2] [ -2.4]t^2 , rearrange and
t^2 -[8.7/1.2]+ 8.7^2/[(1.2)(4.8)]=0 complete the square
[t - (8.7/2.4)]^2=0
t = 8.7/2.4 = 3.625 secs
At this stage the deceleration will push the object back in the direction it came from for another 3.625 secs when it will be 8.7 m/s again
Total time , T =2t = 7.25 secs.

Note:
The term differential is used in calculus to refer to an infinitesimal (infinitely small) change in some varying quantity. For example, if x is a variable, then a change in the value of x is often denoted Δx (pronounced delta x). The differential dx represents an infinitely small change in the variable x.
Physics
Step-by-step answer
P Answered by PhD
First sum applied the Newton's second law motion: F = ma
Force = mass* acceleration
This motion define force as the product of mass times Acceleration (vs.Velocity). Since acceleration is the change in velocity divided by time,
force=(mass*velocity)/time
such that, (mass*velocity)/time=momentum/time
Therefore we get mass*velocity=momentum
Momentum=mass*velocity
Elephant mass=6300 kg; velocity=0.11 m/s
Momentum=6300*0.11
P=693 kg (m/s)
Dolphin mass=50 kg; velocity=10.4 m/s
Momentum=50*10.4
P=520 kg (m/s)
The elephant has more momentum(P) because it is large.
Physics
Step-by-step answer
P Answered by PhD
The horizontal and vertical motions of balloons are independent from each other.
Let vertical component of initial velocity U' horizontal component of initial velocity U"
Time of landing (t) is found with the help of vertical motion.
Since vertical component of initial velocity of balloon is zero(U' = 0)
From equation h = U't + 1/2gt^2
h = 1/2gt^2
t = √(2h/g)
t = √( 2×150/9.8)
t = 5.53 sec
Horizontal velocity = 50m/s
Horizontal range of balloon, R = U"t
= 50× 5.53
= 27.65m
So the balloon will go 27.65 metre away from the bridge

Try asking the Studen AI a question.

It will provide an instant answer!

FREE