Chemistry : asked on sumayyahjj
 16.09.2022

The formation of ethyl alcohol (C2H5OH) by the fermentation of glucose (C6H12O6) may be represent by the following: C6H12O6 --> 2 C2H5OH 2 CO2 If a particular glucose fermentation process is 70.0% efficient, how many grams of glucose would be required for the production of 51.0 g of ethyl alcohol (C2H5OH)

. 0

Step-by-step answer

24.06.2023, solved by verified expert
Unlock the full answer
4 students found this answer . helpful

142.5 g

Explanation:

According to the chemical reaction:

C₆H₁₂O₆ --> 2 C₂H₅OH + 2 CO₂

1 mol of glucose (C₆H₁₂O₆) forms 2 moles of ethyl alcohol (C₂H₅OH) and 2 moles of carbon dioxide (CO₂).

We first convert the moles to grams by using the molecular weight (Mw) of each compound:

Mw (C₆H₁₂O₆) = (12 g/mol x 6) + (1 g/mol x 12) + (16 g/mol x 6)= 180 g/mol

1 mol C₆H₁₂O₆ = 180 g/mol x 1 mol = 180 g

Mw(C₂H₅OH) = (12 g/mol x 2) + (1 g/mol x 5) + 16 g/mol + 1 g/mol= 46 g/mol

2 mol C₂H₅OH = 2 mol x 46 g/mol = 92 g

Thus, when the process is 100% efficient, 180 grams of glucose produce 92 grams of ethyl alcohol. To form 51.0 grams of ethyl alcohol, we will need:

51.0 g C₂H₅OH x (180 g C₆H₁₂O₆/92 g C₂H₅OH) = 99.8 g C₆H₁₂O₆

As the process has a lower efficiency (70.0%), we will need more glucose to obtain the required yield. So, we divide the mass of glucose required for a process 100% efficient by the actual efficiency:

mass of glucose required = 99.8 g C₆H₁₂O₆/(70%) = 99.8 g C₆H₁₂O₆ x 100/70 = 142.5 g

Therefore, it would be required 142.5 grams of glucose to obtain 51.0 grams of ethyl alcohol.

It is was helpful?

Faq

Chemistry
Step-by-step answer
P Answered by PhD

142.5 g

Explanation:

According to the chemical reaction:

C₆H₁₂O₆ --> 2 C₂H₅OH + 2 CO₂

1 mol of glucose (C₆H₁₂O₆) forms 2 moles of ethyl alcohol (C₂H₅OH) and 2 moles of carbon dioxide (CO₂).

We first convert the moles to grams by using the molecular weight (Mw) of each compound:

Mw (C₆H₁₂O₆) = (12 g/mol x 6) + (1 g/mol x 12) + (16 g/mol x 6)= 180 g/mol

1 mol C₆H₁₂O₆ = 180 g/mol x 1 mol = 180 g

Mw(C₂H₅OH) = (12 g/mol x 2) + (1 g/mol x 5) + 16 g/mol + 1 g/mol= 46 g/mol

2 mol C₂H₅OH = 2 mol x 46 g/mol = 92 g

Thus, when the process is 100% efficient, 180 grams of glucose produce 92 grams of ethyl alcohol. To form 51.0 grams of ethyl alcohol, we will need:

51.0 g C₂H₅OH x (180 g C₆H₁₂O₆/92 g C₂H₅OH) = 99.8 g C₆H₁₂O₆

As the process has a lower efficiency (70.0%), we will need more glucose to obtain the required yield. So, we divide the mass of glucose required for a process 100% efficient by the actual efficiency:

mass of glucose required = 99.8 g C₆H₁₂O₆/(70%) = 99.8 g C₆H₁₂O₆ x 100/70 = 142.5 g

Therefore, it would be required 142.5 grams of glucose to obtain 51.0 grams of ethyl alcohol.

Chemistry
Step-by-step answer
P Answered by Master
Answer: 0.0045 mol
Explanation: Convert 30 ml to l: 30 mL = 0.03 L
Molarity = mol/l
mol = molarity * L
mol = 0.15 * 0.03 = 0.0045 mol
Answer: 0.0045 mol
Explanation: Convert 30 ml to l: 30 mL = 0.03 L
Molarity = mol/l
mol = molarit
Chemistry
Step-by-step answer
P Answered by PhD
Answer: chalcogens.
Explanation: Strontium is an alkaline earth metal, it always exhibits a degree of oxidation in its compounds +2.
Chalcogens are a group of 6 chemical elements (oxygen O, sulfur S, selenium se, tellurium te, polonium Po) that have an oxidation state of -2 => Chalcogens will combine with strontium in a ratio of 1:1.
Chemistry
Step-by-step answer
P Answered by PhD

Answer:

52.6 gram

Step-by-step explanation:

It is clear by the equation 2(27+3×35.5)= 267 gm of AlCl3 reacts with 6× 80 = 480 gm of Br2 . So 29.2 gm reacts = 480× 29.2/267= 52.6 gm

Chemistry
Step-by-step answer
P Answered by Master

Calcium (Ca)(On the periodic table, ionization energy increases as you go up and to the right of the periodic table)

Calcium (Ca)(On the periodic table, ionization energy increases as you go up and to the right of the
Chemistry
Step-by-step answer
P Answered by PhD

Answer:

Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N2 gas at 328K and 0.884 atm is 26.07 L.

An ideal gas is a theoretical gas that is considered to be composed of point particles that move randomly and do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.

The pressure, P, the temperature, T, and the volume, V, of an ideal gas, are related by a simple formula called the ideal gas law:  

P×V = n×R×T

where P is the gas pressure, V is the volume that occupies, T is its temperature, R is the ideal gas constant, and n is the number of moles of the gas. The universal constant of ideal gases R has the same value for all gaseous substances.

Explanation:

In this case, you know:

P= 0.884 atm

V= ?

n= Answer:Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N 0.857 moles (where 28 g/mole is the molar mass of N₂, that is, the amount of mass that the substance contains in one mole.)

R=0.082Answer:Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N

T= 328 K

Replacing in the ideal gas law:

0.884 atm×V= 0.857 moles× 0.082Answer:Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N ×328 K

Solving:

Answer:Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N

V= 26.07 L

The volume of a container that contains 24.0 grams of N2 gas at 328K and 0.884 atm is 26.07 L.

Chemistry
Step-by-step answer
P Answered by PhD
15 moles.Explanation:Hello,In this case, the undergoing chemical reaction is:Clearly, since carbon and oxygen are in a 1:1 molar ratio, 15 moles of carbon will completely react with 15 moles of oxygen, therefore 15 moles of oxygen remain as leftovers. In such a way, since carbon and carbon dioxide are also in a 1:1 molar ratio, the theoretical yield of carbon dioxide is 15 moles based on the stoichiometry:Best regards.
Chemistry
Step-by-step answer
P Answered by PhD
Answer: 25 g
Explanation: Given:
Original amount (N₀) = 100 g
Number of half-lives (n) = 11460/5730 = 2
Amount remaining (N) = ?
N = 1/2ⁿ × N₀
N = 1/2^2 × 100
N = 0.25 × 100
N = 25 g
Chemistry
Step-by-step answer
P Answered by PhD
Answer: 7.8125 g
Explanation: Given:
Original amount (N₀) = 500 g
Number of half-lives (n) = 9612/1602 = 6
Amount remaining (N) = ?
N = 1/2ⁿ × N₀
N = 1/2^6 × 500
N = 0.015625 × 500
N = 7.8125 g
Chemistry
Step-by-step answer
P Answered by PhD
Answer: B. carbon tetrachloride, CCI4
Explanation: The other options are incorrect. Let's write the correct formulas:
A. Diarsenic pentoxide - As2O5
C. Sodium dichromate - Na2Cr2O7
D. magnesium phosphide - Mg3P2

Try asking the Studen AI a question.

It will provide an instant answer!

FREE