Chemistry : asked on shann7074
 05.12.2021

Predict the missing product of this equation

1 MgF2 + 1 Li2CO3 -> 1 +2LiF

. 0

Step-by-step answer

24.06.2023, solved by verified expert
Unlock the full answer

MgCO₃

Explanation:

From the question given above, we obtained:

MgF₂ + Li₂CO₃ —> __ + 2LiF

The missing part of the equation can be obtained by writing the ionic equation for the reaction between MgF₂ and Li₂CO₃. This is illustrated below:

MgF₂ (aq) —> Mg²⁺ + 2F¯

Li₂CO₃ (aq) —> 2Li⁺ + CO₃²¯

MgF₂ + Li₂CO₃ —>

Mg²⁺ + 2F¯ + 2Li⁺ + CO₃²¯ —> Mg²⁺CO₃²¯ + 2Li⁺F¯

MgF₂ + Li₂CO₃ —> MgCO₃ + 2LiF

Now, we share compare the above equation with the one given in the question above to obtain the missing part. This is illustrated below:

MgF₂ + Li₂CO₃ —> __ + 2LiF

MgF₂ + Li₂CO₃ —> MgCO₃ + 2LiF

Therefore, the missing part of the equation is MgCO₃

It is was helpful?

Faq

Chemistry
Step-by-step answer
P Answered by Master
Answer: 0.0045 mol
Explanation: Convert 30 ml to l: 30 mL = 0.03 L
Molarity = mol/l
mol = molarity * L
mol = 0.15 * 0.03 = 0.0045 mol
Answer: 0.0045 mol
Explanation: Convert 30 ml to l: 30 mL = 0.03 L
Molarity = mol/l
mol = molarit
Chemistry
Step-by-step answer
P Answered by PhD

Answer:

52.6 gram

Step-by-step explanation:

It is clear by the equation 2(27+3×35.5)= 267 gm of AlCl3 reacts with 6× 80 = 480 gm of Br2 . So 29.2 gm reacts = 480× 29.2/267= 52.6 gm

Chemistry
Step-by-step answer
P Answered by PhD

glycoproteins

Explanation:

A positive reaction for Molisch's test is given by almost all carbohydrates (exceptions include tetroses & trioses). It can be noted that even some glycoproteins and nucleic acids give positive results for this test (since they tend to undergo hydrolysis when exposed to strong mineral acids and form monosaccharides).

Chemistry
Step-by-step answer
P Answered by PhD

Answer:

Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N2 gas at 328K and 0.884 atm is 26.07 L.

An ideal gas is a theoretical gas that is considered to be composed of point particles that move randomly and do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.

The pressure, P, the temperature, T, and the volume, V, of an ideal gas, are related by a simple formula called the ideal gas law:  

P×V = n×R×T

where P is the gas pressure, V is the volume that occupies, T is its temperature, R is the ideal gas constant, and n is the number of moles of the gas. The universal constant of ideal gases R has the same value for all gaseous substances.

Explanation:

In this case, you know:

P= 0.884 atm

V= ?

n= Answer:Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N 0.857 moles (where 28 g/mole is the molar mass of N₂, that is, the amount of mass that the substance contains in one mole.)

R=0.082Answer:Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N

T= 328 K

Replacing in the ideal gas law:

0.884 atm×V= 0.857 moles× 0.082Answer:Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N ×328 K

Solving:

Answer:Taking into accoun the ideal gas law, The volume of a container that contains 24.0 grams of N

V= 26.07 L

The volume of a container that contains 24.0 grams of N2 gas at 328K and 0.884 atm is 26.07 L.

Chemistry
Step-by-step answer
P Answered by PhD
15 moles.Explanation:Hello,In this case, the undergoing chemical reaction is:Clearly, since carbon and oxygen are in a 1:1 molar ratio, 15 moles of carbon will completely react with 15 moles of oxygen, therefore 15 moles of oxygen remain as leftovers. In such a way, since carbon and carbon dioxide are also in a 1:1 molar ratio, the theoretical yield of carbon dioxide is 15 moles based on the stoichiometry:Best regards.
Chemistry
Step-by-step answer
P Answered by PhD
Answer: 7.8125 g
Explanation: Given:
Original amount (N₀) = 500 g
Number of half-lives (n) = 9612/1602 = 6
Amount remaining (N) = ?
N = 1/2ⁿ × N₀
N = 1/2^6 × 500
N = 0.015625 × 500
N = 7.8125 g
Chemistry
Step-by-step answer
P Answered by PhD
Answer: The product formed is potassium chloride.
Explanation:
Precipitation reaction is defined as the chemical reaction in which an insoluble salt is formed when two solutions are mixed containing soluble substances. The insoluble salt settles down at the bottom of the reaction mixture.

The chemical equation for the reaction of potassium phosphate and magnesium chloride follows (look at the picture)

2 moles of aqueous solution of potassium phosphate reacts with 3 moles of aqueous solution of magnesium chloride to produce 1 mole of solid magnesium phosphate and 6 moles of aqueous solution of potassium chloride.
Answer: The product formed is potassium chloride.
Explanation:
Precipitation reaction is defined a
Chemistry
Step-by-step answer
P Answered by PhD
Answer: B. carbon tetrachloride, CCI4
Explanation: The other options are incorrect. Let's write the correct formulas:
A. Diarsenic pentoxide - As2O5
C. Sodium dichromate - Na2Cr2O7
D. magnesium phosphide - Mg3P2
Chemistry
Step-by-step answer
P Answered by PhD
Answer: a. basic
b. basic
c. acidic
d. neutral

Explanation: Acids and bases can be classified in terms of hydrogen ions or hydroxide ions, or in terms of electron pairs. (look at the picture)
Let us note that from the pH scale, a pH of;
0 - 6.9 is acidic
7 is neutral
8 - 14 is basic

But pH= - log [H^+]
pOH = -log [OH^-]
Then;
pH + pOH = 14
Hence;
pH = 14 - pOH

a. [H+] = 6.0 x 10-10M
pH= 9.22 is basic
b. [OH-] = 30 × 10-2M
pH = 13.5 is basic
C. IH+1 = 20× 10-7M
pH = 0.56 is acidic
d. [OH-] = 1.0 x 10-7M
pH = 7 is neutral
Answer: a. basic
b. basic
c. acidic
d. neutral

Explanation: Acids and bases can be classified
Chemistry
Step-by-step answer
P Answered by PhD
Answer: 306 L
Explanation: Using the ideal gas law,
PV = nRT
where R = 0.08206 L•atm/(mol•°K), solving for n gives
n = PV/(RT)
n = (845 mmHg) (270 L) / ((0.08206 L•atm/(mol•°K)) (24 °C))

Convert the given temperature to °K and the given pressure to atm:
24 °C = (273.15 + 24) °K ≈ 297.2 °K
(845 mmHg) × (1/760 atm/mmHg) ≈ 1.11 atm

Then the balloon contains
n = (1.11 atm) (270 L) / ((0.08206 L•atm/(mol•°K)) (297.2 °K))
n ≈ 12.3 mol
of He.

Solve the same equation for V :
V = nRT/P

Convert the target temperature to °K:
-50 °C = (273.15 - 50) °K = 223.15 °K

Then the volume under the new set of conditions is
V = (12.3 mol) (0.08206 L•atm/(mol•°K)) (223.15 °K) / (0.735 atm)
V ≈ 306 L

Try asking the Studen AI a question.

It will provide an instant answer!

FREE