Given the two similar solids as shown in the diagram:
a. Volume of Solid B =
b. Surface Area of Solid A =
Given that the two solids, A and B, are similar, therefore, assuming they have a pair of corresponding dimension, given as, a and b respectively, thus:
(ratio of their volume to their corresponding sides) (ratio of their surface area to their corresponding sides)
Thus:
a. Volume of Solid A =
a = 3 cm
b = 6 cm
Substitute
a. Area of Solid B =
a = 3 cm
b = 6 cm
Substitute Therefore, given the two similar solids as shown in the diagram:
This question has missing diagram, but I'll try to help you either way. We know that the surface area of a sphere is given by:
On the other hand, the volume of a sphere is given by:
1. The hemisphere has a total surface area of:
The total surface area of the hemisphere is half the surface area of a sphere plus the area of the base of the hemisphere which is a circular base with radius r, in other words:
2. The hemisphere has a volume of kn cm^3
. Find the value of k.
As I understand this question we want to know what is the value of k given the volume of a sphere, in other words, the volume of a sphere is:
Given the two similar solids as shown in the diagram:
a. Volume of Solid B =
b. Surface Area of Solid A =
Given that the two solids, A and B, are similar, therefore, assuming they have a pair of corresponding dimension, given as, a and b respectively, thus:
(ratio of their volume to their corresponding sides) (ratio of their surface area to their corresponding sides)
Thus:
a. Volume of Solid A =
a = 3 cm
b = 6 cm
Substitute
a. Area of Solid B =
a = 3 cm
b = 6 cm
Substitute Therefore, given the two similar solids as shown in the diagram:
This question has missing diagram, but I'll try to help you either way. We know that the surface area of a sphere is given by:
On the other hand, the volume of a sphere is given by:
1. The hemisphere has a total surface area of:
The total surface area of the hemisphere is half the surface area of a sphere plus the area of the base of the hemisphere which is a circular base with radius r, in other words:
2. The hemisphere has a volume of kn cm^3
. Find the value of k.
As I understand this question we want to know what is the value of k given the volume of a sphere, in other words, the volume of a sphere is: