28.03.2020

Simplify:
3 (2x - 4)

. 0

Step-by-step answer

24.06.2023, solved by verified expert

Faq

Mathematics
Step-by-step answer
P Answered by PhD

Given:

The expression is

3(2x-4)-4x

To find:

The simplified form of the given expression by using the distributive property and combining like terms.

Solution:

We have,

3(2x-4)-4x

Using the distributive property, we get

=3(2x)+3(-4)-4x

=6x-12-4x

On combining like terms, we get

=(6x-4x)-12

=2x-12

Therefore, the simplified form of the given expression is 2x-12.

Mathematics
Step-by-step answer
P Answered by PhD

1. 3x^2-4x=x(3x-4) - A.

2. x^2 + 21x +20=(x-x_1)(x-x_2)

Find the roots:

D=21^2-4\cdot 20=441-80=361, \ \sqrt{D}=19,\\ \\x_1=\dfrac{-21-19}{2}=-20, \ x_2=\dfrac{-21+19}{2}=-1,

then

x^2 + 21x +20=(x+20)(x+1) - C.

3. 4x^2 -9=(2x)^2-3^2=(2x-3)(2x+3) - D.

4. 12x^3-36x^2=12x^2(x-3) - C.

5. x^2 -5x -6=(x-x_1)(x-x_2)

Find the roots:

D=(-5)^2-4\cdot (-6)=25+24=49, \ \sqrt{D}=7,\\ \\x_1=\dfrac{5-7}{2}=-1, \ x_2=\dfrac{5+7}{2}=6,

then

x^2 -5x -6=(x-6)(x+1) and the width of the lawn is x-6 - A.

6. Since x^2 + 5x -24=(x+8)(x-3) the length and width are x+8 and x-3 - A.

7. 32 -8z^2=8(4-z^2)=8(2^2-z^2)=8(2-z)(2+z) - B.

8. 12x^2=2\cdot 2\cdot 3\cdot x\cdot x, \\24x^2y^2=2\cdot 2\cdot 2\cdot3\cdot x\cdot x\cdot y\cdot y , \\ 46xy=2\cdot 23\cdot x\cdot y.

So the greatest common divisor is 2\cdot x=2x - D.

9. 2x^2 -3x -35=2(x-x_1)(x-x_2)

Find the roots:

D=(-3)^2-4\cdot (-35)\cdot 2=9+280=289, \ \sqrt{D}=17,\\ \\x_1=\dfrac{3-17}{2\cdot 2}=-\dfrac{7}{2}, \ x_2=\dfrac{3+17}{2\cdot 2}=5,

then

2x^2 -3x -35=2(x+\dfrac{7}{2})(x-5)=(2x+7)(x-5) - A.

10. 81x^2 + 36x + 4=(9x)^2+2\cdot 9x\cdot 2+2^2=(9x+2)^2 - B.

11. 18x^2+ 69x +60=3(6x^2+23x+20)=3\cdot 6(x+\dfrac{5}{2})(x+\dfrac{4}{3})=(6x+15)(3x+4), the length is 6x+15.

12. (x^2 +2x)(5x -3) =x^2\cdot 5x-x^2\cdot 3+2x\cdot 5x-2x\cdot 3=5x^3-3x^2+10x^2-6x=5x^3+7x^2-6x - C.

13. 30g^5 +24g^3h- 35g^2h^2 - 28h^3=(30g^5 +24g^3h)-(35g^2h^2+ 28h^3)=6g^3(5g^2+4h)-7h^2(5g^2+4h)=(5g^2+4h)(6g^3-7h^2).

14. x^2 -16=(x-4)(x+4) - B.

15. 81p^2 + 90p +25=(9p)^2+2\cdot 9p\cdot 5+5^2=(9p+5)^2, the length of one side is 9p+5.

Mathematics
Step-by-step answer
P Answered by PhD

1. 3x^2-4x=x(3x-4) - A.

2. x^2 + 21x +20=(x-x_1)(x-x_2)

Find the roots:

D=21^2-4\cdot 20=441-80=361, \ \sqrt{D}=19,\\ \\x_1=\dfrac{-21-19}{2}=-20, \ x_2=\dfrac{-21+19}{2}=-1,

then

x^2 + 21x +20=(x+20)(x+1) - C.

3. 4x^2 -9=(2x)^2-3^2=(2x-3)(2x+3) - D.

4. 12x^3-36x^2=12x^2(x-3) - C.

5. x^2 -5x -6=(x-x_1)(x-x_2)

Find the roots:

D=(-5)^2-4\cdot (-6)=25+24=49, \ \sqrt{D}=7,\\ \\x_1=\dfrac{5-7}{2}=-1, \ x_2=\dfrac{5+7}{2}=6,

then

x^2 -5x -6=(x-6)(x+1) and the width of the lawn is x-6 - A.

6. Since x^2 + 5x -24=(x+8)(x-3) the length and width are x+8 and x-3 - A.

7. 32 -8z^2=8(4-z^2)=8(2^2-z^2)=8(2-z)(2+z) - B.

8. 12x^2=2\cdot 2\cdot 3\cdot x\cdot x, \\24x^2y^2=2\cdot 2\cdot 2\cdot3\cdot x\cdot x\cdot y\cdot y , \\ 46xy=2\cdot 23\cdot x\cdot y.

So the greatest common divisor is 2\cdot x=2x - D.

9. 2x^2 -3x -35=2(x-x_1)(x-x_2)

Find the roots:

D=(-3)^2-4\cdot (-35)\cdot 2=9+280=289, \ \sqrt{D}=17,\\ \\x_1=\dfrac{3-17}{2\cdot 2}=-\dfrac{7}{2}, \ x_2=\dfrac{3+17}{2\cdot 2}=5,

then

2x^2 -3x -35=2(x+\dfrac{7}{2})(x-5)=(2x+7)(x-5) - A.

10. 81x^2 + 36x + 4=(9x)^2+2\cdot 9x\cdot 2+2^2=(9x+2)^2 - B.

11. 18x^2+ 69x +60=3(6x^2+23x+20)=3\cdot 6(x+\dfrac{5}{2})(x+\dfrac{4}{3})=(6x+15)(3x+4), the length is 6x+15.

12. (x^2 +2x)(5x -3) =x^2\cdot 5x-x^2\cdot 3+2x\cdot 5x-2x\cdot 3=5x^3-3x^2+10x^2-6x=5x^3+7x^2-6x - C.

13. 30g^5 +24g^3h- 35g^2h^2 - 28h^3=(30g^5 +24g^3h)-(35g^2h^2+ 28h^3)=6g^3(5g^2+4h)-7h^2(5g^2+4h)=(5g^2+4h)(6g^3-7h^2).

14. x^2 -16=(x-4)(x+4) - B.

15. 81p^2 + 90p +25=(9p)^2+2\cdot 9p\cdot 5+5^2=(9p+5)^2, the length of one side is 9p+5.

Try asking the Studen AI a question.

It will provide an instant answer!

FREE