Mathematics : asked on nick650
 25.12.2020

If a = [1,2,3] and b = [1, 3, –2], find the angle between a and b.

. 0

Step-by-step answer

09.07.2023, solved by verified expert

Faq

Mathematics
Step-by-step answer
P Answered by Specialist

85.9°

Step-by-step explanation:

angle = \arccos\frac{a\cdot b}{|a| |b|} = \arccos\frac{1+6-6}{{\sqrt{1+4+9}}\sqrt{1+9+4}}\\=\arccos\frac{1}{14}=85.9 degrees

Mathematics
Step-by-step answer
P Answered by Master

The answer is D. \left[\begin{array}{ccc}-24&0&-3\\8&-48&56\\25&-6&10\end{array}\right]

Step-by-step explanation:

We have:

F=\left[\begin{array}{cc}-2&0\\0&8\\2&1\end{array}\right]

C=\left[\begin{array}{ccc}12&0&\frac{3}{2} \\1&-6&7\end{array}\right]

And we need to find FC, this means that we have to find the product between this two matrices.

This product will be possible only if the number of columns of the first matrix is equal to the number of rows of the second matrix.

F is a 3x2 matrix, this means F has 3 rows and 2 columns.

C is a 2x3 matrix this means it has 2 rows and 3 columns.

Then the product is possible because the number of columns of F is equal to the number of rows of C.

And the  resulting matrix will be a 3x3.

By definition the product between two matrices is:

Let's suppose both matrices are 2x2,

A=\left[\begin{array}{cc}a_{11} &a_{12} \\a_{21} &a_{22}\end{array}\right]

B=\left[\begin{array}{cc}b_{11} &b_{12} \\b_{21} &b_{22}\end{array}\right]

The product between A and B is:

AB=\left[\begin{array}{cc}a_{11}b_{11}+a_{12}b_{21}&a_{11}b_{12}+a_{12}b_{22}\\a_{21}b_{11}+a_{22}b_{21}&a_{21}b_{12}+a_{22}b_{22}\end{array}\right]

IMPORTANT: It's not the same AB then BA the results of both products are differents.

Now, doing the product between F and C:

FC=\left[\begin{array}{cc}-2&0\\0&8\\2&1\end{array}\right]X\left[\begin{array}{ccc}12&0&\frac{3}{2} \\1&-6&7\end{array}\right]

=\left[\begin{array}{ccc}(-2).12+0.1&(-2).0+0.(-6)&(-2).\frac{3}{2} +0.7\\0.12+8.1&0.0+8.(-6)&0.\frac{3}{2} +8.7\\2.12+1.1&2.0+1.(-6)&2.\frac{3}{2} +1.7\end{array}\right] \\ =\left[\begin{array}{ccc}-24&0&-3\\8&-48&56\\25&-6&10\end{array}\right]

And then the answer is option D.

Mathematics
Step-by-step answer
P Answered by Master

The answer is D. \left[\begin{array}{ccc}-24&0&-3\\8&-48&56\\25&-6&10\end{array}\right]

Step-by-step explanation:

We have:

F=\left[\begin{array}{cc}-2&0\\0&8\\2&1\end{array}\right]

C=\left[\begin{array}{ccc}12&0&\frac{3}{2} \\1&-6&7\end{array}\right]

And we need to find FC, this means that we have to find the product between this two matrices.

This product will be possible only if the number of columns of the first matrix is equal to the number of rows of the second matrix.

F is a 3x2 matrix, this means F has 3 rows and 2 columns.

C is a 2x3 matrix this means it has 2 rows and 3 columns.

Then the product is possible because the number of columns of F is equal to the number of rows of C.

And the  resulting matrix will be a 3x3.

By definition the product between two matrices is:

Let's suppose both matrices are 2x2,

A=\left[\begin{array}{cc}a_{11} &a_{12} \\a_{21} &a_{22}\end{array}\right]

B=\left[\begin{array}{cc}b_{11} &b_{12} \\b_{21} &b_{22}\end{array}\right]

The product between A and B is:

AB=\left[\begin{array}{cc}a_{11}b_{11}+a_{12}b_{21}&a_{11}b_{12}+a_{12}b_{22}\\a_{21}b_{11}+a_{22}b_{21}&a_{21}b_{12}+a_{22}b_{22}\end{array}\right]

IMPORTANT: It's not the same AB then BA the results of both products are differents.

Now, doing the product between F and C:

FC=\left[\begin{array}{cc}-2&0\\0&8\\2&1\end{array}\right]X\left[\begin{array}{ccc}12&0&\frac{3}{2} \\1&-6&7\end{array}\right]

=\left[\begin{array}{ccc}(-2).12+0.1&(-2).0+0.(-6)&(-2).\frac{3}{2} +0.7\\0.12+8.1&0.0+8.(-6)&0.\frac{3}{2} +8.7\\2.12+1.1&2.0+1.(-6)&2.\frac{3}{2} +1.7\end{array}\right] \\ =\left[\begin{array}{ccc}-24&0&-3\\8&-48&56\\25&-6&10\end{array}\right]

And then the answer is option D.

Mathematics
Step-by-step answer
P Answered by PhD
Question 1:

\left[\begin{array}{ccc}5\\-2\\1\end{array}\right] \left[\begin{array}{ccc}12\end{array}\right] = \left[\begin{array}{ccc}(5)(12)+(-2)(12)+(1)(1)\end{array}\right]
\left[\begin{array}{ccc}60-24+12\end{array}\right] = \left[\begin{array}{ccc}48\end{array}\right]
A
------------------------------------------------------------------------------------------------------------

Question 2
\left[\begin{array}{ccc}-6&-4\\6&0\\6&4\end{array}\right] - \left[\begin{array}{ccc}-5&5\\-4&-4\\6&-4\end{array}\right]
\left[\begin{array}{ccc}(-6--5)&(-4-5)\\(6--4)&(0--4)\\(6-6)&(4--4)\end{array}\right] = \left[\begin{array}{ccc}-1&-9\\10&4\\0&8\end{array}\right]
---------------------------------------------------------------------------------------------------------------

Question 3

\left[\begin{array}{ccc}1&-4\\3&5\end{array}\right] + \left[\begin{array}{ccc}-2&6\\-2&4\end{array}\right]
=\left[\begin{array}{ccc}(1+-2)&(-4+6)\\(3+-2)&(5+4)\end{array}\right]
=\left[\begin{array}{ccc}-1&2\\1&9\end{array}\right]
----------------------------------------------------------------------------------------------------------------

Question 4

A= \left[\begin{array}{ccc}4&-7\\3&-2\end{array}\right]
det A=(4)(-2)-(-7)(3)=-8+21=13

A
--------------------------------------------------------------------------------------------------------------

Question 5
\left[\begin{array}{ccc}3&0\\2&-1\end{array}\right] + \left[\begin{array}{ccc}2&8\\6&3\end{array}\right]
=\left[\begin{array}{ccc}3+2&0+8\\2+6&(-1)+3\end{array}\right]
=\left[\begin{array}{ccc}5&8\\8&2\end{array}\right]
---------------------------------------------------------------------------------------------------------

Question 6
4  \left[\begin{array}{ccc}12&0& \frac{3}{2} \\1&-6&7\end{array}\right] =  \left[\begin{array}{ccc}48&0&6\\4&-24&28\end{array}\right]

________________________________________________________

Question 7

C =  \left[\begin{array}{ccc}-5&1\\5&4\end{array}\right]
det C = (-5)(4) - (1)(5) = -20-5 = -25
--------------------------------------------------------------------------------------------------------------

Question 8
2  \left[\begin{array}{ccc}12\end{array}\right]   \left[\begin{array}{ccc}3&0\\2&-1\end{array}\right]
\left[\begin{array}{ccc}24\end{array}\right]   \left[\begin{array}{ccc}3&6\\2&-1\end{array}\right]
\left[\begin{array}{ccc}72&0\\48&-24\end{array}\right]
-------------------------------------------------------------------------------------------------------------

Question 9
\left[\begin{array}{ccc}5&0\\3&-5\end{array}\right]   \left[\begin{array}{ccc}2&-1\\2&-2\end{array}\right]
\left[\begin{array}{ccc}(5)(2)+(0)(2)&(5)(-1)+(0)(-2)\\(3)(2)+(-5)(2)&(3)(-1)+(-5)(-2)\end{array}\right]
\left[\begin{array}{ccc}10+0&-5+0\\6-10&-3+10\end{array}\right] =  \left[\begin{array}{ccc}10&-5\\-4&7\end{array}\right]
Mathematics
Step-by-step answer
P Answered by PhD
Question 1:

\left[\begin{array}{ccc}5\\-2\\1\end{array}\right] \left[\begin{array}{ccc}12\end{array}\right] = \left[\begin{array}{ccc}(5)(12)+(-2)(12)+(1)(1)\end{array}\right]
\left[\begin{array}{ccc}60-24+12\end{array}\right] = \left[\begin{array}{ccc}48\end{array}\right]
A
------------------------------------------------------------------------------------------------------------

Question 2
\left[\begin{array}{ccc}-6&-4\\6&0\\6&4\end{array}\right] - \left[\begin{array}{ccc}-5&5\\-4&-4\\6&-4\end{array}\right]
\left[\begin{array}{ccc}(-6--5)&(-4-5)\\(6--4)&(0--4)\\(6-6)&(4--4)\end{array}\right] = \left[\begin{array}{ccc}-1&-9\\10&4\\0&8\end{array}\right]
---------------------------------------------------------------------------------------------------------------

Question 3

\left[\begin{array}{ccc}1&-4\\3&5\end{array}\right] + \left[\begin{array}{ccc}-2&6\\-2&4\end{array}\right]
=\left[\begin{array}{ccc}(1+-2)&(-4+6)\\(3+-2)&(5+4)\end{array}\right]
=\left[\begin{array}{ccc}-1&2\\1&9\end{array}\right]
----------------------------------------------------------------------------------------------------------------

Question 4

A= \left[\begin{array}{ccc}4&-7\\3&-2\end{array}\right]
det A=(4)(-2)-(-7)(3)=-8+21=13

A
--------------------------------------------------------------------------------------------------------------

Question 5
\left[\begin{array}{ccc}3&0\\2&-1\end{array}\right] + \left[\begin{array}{ccc}2&8\\6&3\end{array}\right]
=\left[\begin{array}{ccc}3+2&0+8\\2+6&(-1)+3\end{array}\right]
=\left[\begin{array}{ccc}5&8\\8&2\end{array}\right]
---------------------------------------------------------------------------------------------------------

Question 6
4  \left[\begin{array}{ccc}12&0& \frac{3}{2} \\1&-6&7\end{array}\right] =  \left[\begin{array}{ccc}48&0&6\\4&-24&28\end{array}\right]

________________________________________________________

Question 7

C =  \left[\begin{array}{ccc}-5&1\\5&4\end{array}\right]
det C = (-5)(4) - (1)(5) = -20-5 = -25
--------------------------------------------------------------------------------------------------------------

Question 8
2  \left[\begin{array}{ccc}12\end{array}\right]   \left[\begin{array}{ccc}3&0\\2&-1\end{array}\right]
\left[\begin{array}{ccc}24\end{array}\right]   \left[\begin{array}{ccc}3&6\\2&-1\end{array}\right]
\left[\begin{array}{ccc}72&0\\48&-24\end{array}\right]
-------------------------------------------------------------------------------------------------------------

Question 9
\left[\begin{array}{ccc}5&0\\3&-5\end{array}\right]   \left[\begin{array}{ccc}2&-1\\2&-2\end{array}\right]
\left[\begin{array}{ccc}(5)(2)+(0)(2)&(5)(-1)+(0)(-2)\\(3)(2)+(-5)(2)&(3)(-1)+(-5)(-2)\end{array}\right]
\left[\begin{array}{ccc}10+0&-5+0\\6-10&-3+10\end{array}\right] =  \left[\begin{array}{ccc}10&-5\\-4&7\end{array}\right]
Mathematics
Step-by-step answer
P Answered by Master

A ) Not orthogonal to each other

B) 50i + 40j + 105k

C) The tensor product is attached below

D ) The value of X = F.X is attached below

Step-by-step explanation:

attached below is the detailed solution of the above problem

A) for the vectors ( u ) and ( v ) to be orthogonal to each other [ U.V has to be = 0 ] but in this scenario  U.V = 4 hence they are not orthogonal to each other

b) The vector normal to plane is gotten by : U x V

= 50i + 40j + 105k


Linear algebra is a fundamental component of continuum mechanics (and most engineering disciplines).
Mathematics
Step-by-step answer
P Answered by Specialist

A ) Not orthogonal to each other

B) 50i + 40j + 105k

C) The tensor product is attached below

D ) The value of X = F.X is attached below

Step-by-step explanation:

attached below is the detailed solution of the above problem

A) for the vectors ( u ) and ( v ) to be orthogonal to each other [ U.V has to be = 0 ] but in this scenario  U.V = 4 hence they are not orthogonal to each other

b) The vector normal to plane is gotten by : U x V

= 50i + 40j + 105k


Linear algebra is a fundamental component of continuum mechanics (and most engineering disciplines).
Computers and Technology
Step-by-step answer
P Answered by PhD

Explanation:

Take note to avoid Indentation mistake which would lead to error message.

So let us begin by;

import java.util.*; using Java as our programming language

class Mutation {

public static boolean alternatingSort(int n , int[] a)

{

int []b = new int[n];

b[0]=a[0];

int j=1,k=0;

for(int i=1;i<n;i++)

{

if(i%2==1)

{

b[i]=a[n-j];

j++;

}

else

b[i]=a[++k];

}

for(int i=0;i<n;i++)

      {

      System.out.print(b[i]+" ");

      }

      System.out.print("\n");

for(int i=1;i<n;i++)

      {

      if(b[i]<=b[i-1])

      return false ;

      }

     

return true;

}

  public static void main (String[] args) {

      Scanner sc = new Scanner(System.in);

      int n= sc.nextInt();

      int []a = new int [n];

     

      for(int i=0;i<n;i++)

      a[i]=sc.nextInt();

      System.out.println(alternatingSort(n,a));

  }

}

This code should give you the desired result (output).

Computers and Technology
Step-by-step answer
P Answered by PhD

Explanation:

Take note to avoid Indentation mistake which would lead to error message.

So let us begin by;

import java.util.*; using Java as our programming language

class Mutation {

public static boolean alternatingSort(int n , int[] a)

{

int []b = new int[n];

b[0]=a[0];

int j=1,k=0;

for(int i=1;i<n;i++)

{

if(i%2==1)

{

b[i]=a[n-j];

j++;

}

else

b[i]=a[++k];

}

for(int i=0;i<n;i++)

      {

      System.out.print(b[i]+" ");

      }

      System.out.print("\n");

for(int i=1;i<n;i++)

      {

      if(b[i]<=b[i-1])

      return false ;

      }

     

return true;

}

  public static void main (String[] args) {

      Scanner sc = new Scanner(System.in);

      int n= sc.nextInt();

      int []a = new int [n];

     

      for(int i=0;i<n;i++)

      a[i]=sc.nextInt();

      System.out.println(alternatingSort(n,a));

  }

}

This code should give you the desired result (output).

Try asking the Studen AI a question.

It will provide an instant answer!

FREE