Mathematics : asked on cecem58
 17.06.2021

Solve for x
X- 3x+2/x+1 = 1/x+1

. 0

Step-by-step answer

09.07.2023, solved by verified expert

Faq

Mathematics
Step-by-step answer
P Answered by Master
Answer is x= 1/2. I have showed the steps in the picture
Solve for x 
X- 3x+2/x+1 = 1/x+1
Mathematics
Step-by-step answer
P Answered by PhD
Question 1

To find the width of the rectangle, we divide the area by the length
2x^{3}-29x+12÷x+4
We use the method of long division to get the answer. The method is shown in the first diagram below

 2x^{2}-8x+3

Question 2:
\frac{x}{6x-x^{2} } = \frac{x}{x(6-x)} = \frac{1}{6-x}

Question 3:
\frac{-12 x^{4} }{x^{4}+8 x^{5} }= \frac{-12 x^{4} }{ x^{4}(1+8x)}= \frac{-12}{1+8x}

Question 4: 
\frac{x+5}{x^{2}+6x+5}= \frac{x+5}{(x+1)(x+5)}= \frac{1}{x+1}

Question 5:
\frac{x^{2}-3x-18} {x+3}= \frac{(x-6)(x+3)}{x+3}= \frac{x-6}{1}=x-6

Question 6:
\frac{2}{3a}×\frac{2}{a^{2}}=\frac{4}{3a^{3} } where a \neq 0

Question 7: (Question is not written well)
\frac{x-5}{4x+8}×(12x^{2}+32x+8)
\frac{12 x^{3}-28 x^{2} -152x-40 }{4x+8}
By performing long division we get an answer 3 x^{2} -x-36 with remainder of 248

Question 8:
( \frac{x^{2}-16} {x-1})÷(x+4)
( \frac{ x^{2}-16 }{x-1})×\frac{1}{x+4}
\frac{(x+4)(x-1)}{x-1}×\frac{1}{x+4}
Cancelling out x+4 we obtain \frac{x+1}{x-1}

Question 9:
\frac{x^{2}+2x+1} {x-2}÷\frac{x^{2-1} }{x^{2}-4 }
\frac{ x^{2}+2x+1 }{x-2}×\frac{x^{2}-4 }{x^{2}-1}
Factorise all the quadratic expression gives
\frac{(x+1)(x+1)}{x-2}×\frac{(x-2)(x+2)}{(x+1)(x-1)}
Cancelling out (x+1) and (x-2) gives a simplest form
\frac{(x+1)(x+2)}{x-1}

Question 10:

\frac{24 w^{10}+8w^{12}  }{4 x^{4} }= \frac{24w^{10} }{4 x^{4} } + \frac{8 w^{12} }{4 x^{4} }
Cancelling out the constants of each fraction
\frac{6w^{10} }{x^{4} }+ \frac{2w^{12} }{x^{4}}= \frac{6w^{10}+2w^{12}  }{ x^{4}}

Question 11:

\frac{-6m^{9}-6m^{8}-16m^{6}   }{2m^{3} } = \frac{-2m^{6}(3m^{3}-3m^{2}-8)}{2m^{3} }
Cancelling 2m^{3} gives us the simplified form
-m^{3}(3m^{3}-3m^{2}-8) = -3m^{6}+3m^{5}+8m^{3}

Question 12:

\frac{-4x}{x+7} - \frac{8}{x-7} = \frac{-4x(x-7)-8(x+7)}{(x+7)(x-7)}
\frac{-4 x^{2} +28x-8x-56}{(x+7)(X-7)}= \frac{-4 x^{2} +20x-56}{(x+7)(x-7)}
Factorising the numerator expression
\frac{(-4x+28)(x-2)}{(x+7)(x-7)} = \frac{-4(x-7)(x-2)}{(x+7)(x-7)}
Cancelling out x-7 gives the simplified form
\frac{-4x+8}{x-7}

Question 13:

\frac{3}{x-3} - \frac{5}{x-2}= \frac{x3(x-2)-5(x-2)}{y(x-3)(x-2)}
\frac{3x-6-5x+15}{(x-3)(x-2)}= \frac{-2x+9}{(x-3)(x-2)}

Question 14:

\frac{9}{x-1}- \frac{5}{x+4}= \frac{9(x+4)-5(x-1)}{(x-1)(x+4)}\frac{9x+36-5x+5}{(x-1)(x+4)}= \frac{4x+41}{(x-1)(x+4)}

Question 15:

\frac{-3}{x+2}- \frac{(-5)}{x+3}= \frac{-3(x+3)-(-5)(x+2)}{(x+2)(x+3)}
\frac{-3x-9+5x+10}{(x+2)(x+3)}= \frac{2x+1}{(x+2)(x+3)}

Question 16:

\frac{4}{x}+ \frac{5}{x}=-3
\frac{9}{x}=-3
x=-3

Question 17:

\frac{1}{3x-6}- \frac{5}{x-2}=12
\frac{(x-2)-5(3x-6)}{(3x-6)(x-2)} =  \frac{x-2-15x+30}{(3x-6)(x-2)}= \frac{-14x+28}{(3x-6)(x-2)}

Question 18

1. the width w of a rectangular swimming pool is x+4. the area a of the pool is 2x^3-29+12. what is
Mathematics
Step-by-step answer
P Answered by PhD
Question 1

To find the width of the rectangle, we divide the area by the length
2x^{3}-29x+12÷x+4
We use the method of long division to get the answer. The method is shown in the first diagram below

 2x^{2}-8x+3

Question 2:
\frac{x}{6x-x^{2} } = \frac{x}{x(6-x)} = \frac{1}{6-x}

Question 3:
\frac{-12 x^{4} }{x^{4}+8 x^{5} }= \frac{-12 x^{4} }{ x^{4}(1+8x)}= \frac{-12}{1+8x}

Question 4: 
\frac{x+5}{x^{2}+6x+5}= \frac{x+5}{(x+1)(x+5)}= \frac{1}{x+1}

Question 5:
\frac{x^{2}-3x-18} {x+3}= \frac{(x-6)(x+3)}{x+3}= \frac{x-6}{1}=x-6

Question 6:
\frac{2}{3a}×\frac{2}{a^{2}}=\frac{4}{3a^{3} } where a \neq 0

Question 7: (Question is not written well)
\frac{x-5}{4x+8}×(12x^{2}+32x+8)
\frac{12 x^{3}-28 x^{2} -152x-40 }{4x+8}
By performing long division we get an answer 3 x^{2} -x-36 with remainder of 248

Question 8:
( \frac{x^{2}-16} {x-1})÷(x+4)
( \frac{ x^{2}-16 }{x-1})×\frac{1}{x+4}
\frac{(x+4)(x-1)}{x-1}×\frac{1}{x+4}
Cancelling out x+4 we obtain \frac{x+1}{x-1}

Question 9:
\frac{x^{2}+2x+1} {x-2}÷\frac{x^{2-1} }{x^{2}-4 }
\frac{ x^{2}+2x+1 }{x-2}×\frac{x^{2}-4 }{x^{2}-1}
Factorise all the quadratic expression gives
\frac{(x+1)(x+1)}{x-2}×\frac{(x-2)(x+2)}{(x+1)(x-1)}
Cancelling out (x+1) and (x-2) gives a simplest form
\frac{(x+1)(x+2)}{x-1}

Question 10:

\frac{24 w^{10}+8w^{12}  }{4 x^{4} }= \frac{24w^{10} }{4 x^{4} } + \frac{8 w^{12} }{4 x^{4} }
Cancelling out the constants of each fraction
\frac{6w^{10} }{x^{4} }+ \frac{2w^{12} }{x^{4}}= \frac{6w^{10}+2w^{12}  }{ x^{4}}

Question 11:

\frac{-6m^{9}-6m^{8}-16m^{6}   }{2m^{3} } = \frac{-2m^{6}(3m^{3}-3m^{2}-8)}{2m^{3} }
Cancelling 2m^{3} gives us the simplified form
-m^{3}(3m^{3}-3m^{2}-8) = -3m^{6}+3m^{5}+8m^{3}

Question 12:

\frac{-4x}{x+7} - \frac{8}{x-7} = \frac{-4x(x-7)-8(x+7)}{(x+7)(x-7)}
\frac{-4 x^{2} +28x-8x-56}{(x+7)(X-7)}= \frac{-4 x^{2} +20x-56}{(x+7)(x-7)}
Factorising the numerator expression
\frac{(-4x+28)(x-2)}{(x+7)(x-7)} = \frac{-4(x-7)(x-2)}{(x+7)(x-7)}
Cancelling out x-7 gives the simplified form
\frac{-4x+8}{x-7}

Question 13:

\frac{3}{x-3} - \frac{5}{x-2}= \frac{x3(x-2)-5(x-2)}{y(x-3)(x-2)}
\frac{3x-6-5x+15}{(x-3)(x-2)}= \frac{-2x+9}{(x-3)(x-2)}

Question 14:

\frac{9}{x-1}- \frac{5}{x+4}= \frac{9(x+4)-5(x-1)}{(x-1)(x+4)}\frac{9x+36-5x+5}{(x-1)(x+4)}= \frac{4x+41}{(x-1)(x+4)}

Question 15:

\frac{-3}{x+2}- \frac{(-5)}{x+3}= \frac{-3(x+3)-(-5)(x+2)}{(x+2)(x+3)}
\frac{-3x-9+5x+10}{(x+2)(x+3)}= \frac{2x+1}{(x+2)(x+3)}

Question 16:

\frac{4}{x}+ \frac{5}{x}=-3
\frac{9}{x}=-3
x=-3

Question 17:

\frac{1}{3x-6}- \frac{5}{x-2}=12
\frac{(x-2)-5(3x-6)}{(3x-6)(x-2)} =  \frac{x-2-15x+30}{(3x-6)(x-2)}= \frac{-14x+28}{(3x-6)(x-2)}

Question 18

1. the width w of a rectangular swimming pool is x+4. the area a of the pool is 2x^3-29+12. what is
Mathematics
Step-by-step answer
P Answered by PhD

y=x-4

Step-by-step explanation:

What you are looking for is also known as the slant asymptote.  The slant asymptote occurs when the degree of the numerator is one degree more than the denominator which is what you have.

So to find the slant asymptote we can use polynomial division.

We have a choice to use synthetic division here because the denominator is linear.

-1 goes on the outside because we are dividing by (x+1).

-1  |    1     -3      -4

   |           -1        4

   |

        1      -4        0

The asymptote is the quotient part which is y=x-4.

So answer is y=x-4.

Mathematics
Step-by-step answer
P Answered by PhD

y=x-4

Step-by-step explanation:

What you are looking for is also known as the slant asymptote.  The slant asymptote occurs when the degree of the numerator is one degree more than the denominator which is what you have.

So to find the slant asymptote we can use polynomial division.

We have a choice to use synthetic division here because the denominator is linear.

-1 goes on the outside because we are dividing by (x+1).

-1  |    1     -3      -4

   |           -1        4

   |

        1      -4        0

The asymptote is the quotient part which is y=x-4.

So answer is y=x-4.

Mathematics
Step-by-step answer
P Answered by Master

B

Step-by-step explanation:

1/x+2 + 1/x+2 = 2/x+2 = 1/x+1.

Mathematics
Step-by-step answer
P Answered by Master

B

Step-by-step explanation:

1/x+2 + 1/x+2 = 2/x+2 = 1/x+1.

Mathematics
Step-by-step answer
P Answered by Specialist

x = -7/5

Step-by-step explanation:

If we square both sides of the equation, we get:

\sqrt{x^2-3x-6}=x-1\\ (\sqrt{x^2-3x-6})^2=(x-1)^2\\x^2-3x-6=x^2-2x+1\\

Then, solving for x, we get:

x^2-3x-6=x^2-2x+1\\-3x-6=2x+1\\-6-1=2x+3x\\-7=5x\\\frac{-7}{5}=x

So, x is equal to -7/5

Mathematics
Step-by-step answer
P Answered by Master

ℝ - {(-2/3),(3/2)}

Step-by-step explanation:

We want the domain of f(g(x)). So, firstly, we have to find the domain for g(x) and, then, for f(g(x)).

- Domain of g(x): Since the expression is a fracion, we must exclude the values of x that make null the denominator. Hence,

g(x)=\dfrac{x+5}{2x-3}\Longrightarrow 2x-3\neq 0\iff \boxed{x\neq\dfrac{3}{2}}

- Domain of f(g(x)): We'll find its expression:

f(x) = \dfrac{3x-2}{x+1}\\\\f(g(x)) = \dfrac{3g(x)-2}{g(x)+1}\\\\f(g(x)) = \dfrac{3\cdot\dfrac{x+5}{2x-3}-2}{\dfrac{x+5}{2x-3}+1}=\dfrac{~~~\dfrac{3(x+5)-2(2x-3)}{2x-3}~~~}{\dfrac{(x+5)+(2x-3)}{2x-3}}\\\\f(g(x)) =\dfrac{3(x+5)-2(2x-3)}{(x+5)+(2x-3)}=\dfrac{3x+15-4x+6}{x+5+2x-3}\\\\\boxed{f(g(x)) =\dfrac{21-x}{3x+2}}

Now, once again, we have to exclude the values of x that make the denominator equals to zero. Thus,

f(g(x)) =\dfrac{21-x}{3x+2}\Longrightarrow 3x+2\neq0\iff \boxed{x\neq-\dfrac{2}{3}}

Lastly, we may write the domanin of f(g(x)):

D(f(g(x)) = \left]-\infty,-\dfrac{2}{3}\right[\cup\left]-\dfrac{2}{3},\dfrac{3}{2}\right[\cup\left]\dfrac{3}{2},\infty\right[

or, just writing in a shorter way:

\boxed{D(f(g(x)) = \mathbb{R}-\left\{-\dfrac{2}{3},\dfrac{3}{2}\right\}}

Mathematics
Step-by-step answer
P Answered by Specialist

x = -7/5

Step-by-step explanation:

If we square both sides of the equation, we get:

\sqrt{x^2-3x-6}=x-1\\ (\sqrt{x^2-3x-6})^2=(x-1)^2\\x^2-3x-6=x^2-2x+1\\

Then, solving for x, we get:

x^2-3x-6=x^2-2x+1\\-3x-6=2x+1\\-6-1=2x+3x\\-7=5x\\\frac{-7}{5}=x

So, x is equal to -7/5

Try asking the Studen AI a question.

It will provide an instant answer!

FREE