11.09.2021

1. Find m∠B, rounded to the nearest degree.

a.53°

b.35°

c.44°

d.65°

. 1

Step-by-step answer

09.07.2023, solved by verified expert
Unlock the full answer

53°

Step-by-step explanation:

Hypotenuse is the longest side and it is opposite to angle 90°

1. Find m∠B, rounded to the nearest degree. a.53°, №18011170, 11.09.2021 13:42

         1. Find m∠B, rounded to the nearest degree. a.53°, №18011170, 11.09.2021 13:42

   1. Find m∠B, rounded to the nearest degree. a.53°, №18011170, 11.09.2021 13:42

B = 53°

It is was helpful?

Faq

Mathematics
Step-by-step answer
P Answered by Master

53°

Step-by-step explanation:

Hypotenuse is the longest side and it is opposite to angle 90°

\sf Sin \ B = \dfrac{Opposite \ side \ of \ angle \ B}{hypotenuse}\\\\

         = \dfrac{4}{5}\\\\=0.8

   B = Sin^{-1} \ (0.8)\\

B = 53°

Mathematics
Step-by-step answer
P Answered by PhD

D. *6F

Step-by-step explanation:

C=(F-32)*5/9

30=(F-32)*5/9

F = (30*9)/5+32

F = 86

Mathematics
Step-by-step answer
P Answered by PhD

Option  D. 7°C

Step-by-step explanation:

Let the temperature in Fahrenheit (F) and the temperature in Celsius(C)

The formula to convert Fahrenheit to Celsius is ⇒ F = 1.8 C + 32

So, to Convert 45° F to Celsius, substitute with with 45° F

45 = 1.8 C + 32

Solve for C

1.8 C = 45 - 32

1.8 C = 13

C = 13/1.8 = 7.222

Rounding to the nearest degree ⇒ 45° F = 7° C

The answer is option  D. 7°C

Mathematics
Step-by-step answer
P Answered by PhD

D. *6F

Step-by-step explanation:

C=(F-32)*5/9

30=(F-32)*5/9

F = (30*9)/5+32

F = 86

Mathematics
Step-by-step answer
P Answered by PhD

Option  D. 7°C

Step-by-step explanation:

Let the temperature in Fahrenheit (F) and the temperature in Celsius(C)

The formula to convert Fahrenheit to Celsius is ⇒ F = 1.8 C + 32

So, to Convert 45° F to Celsius, substitute with with 45° F

45 = 1.8 C + 32

Solve for C

1.8 C = 45 - 32

1.8 C = 13

C = 13/1.8 = 7.222

Rounding to the nearest degree ⇒ 45° F = 7° C

The answer is option  D. 7°C

Mathematics
Step-by-step answer
P Answered by Specialist

1. The given triangle ABC, has a right angle at C, BC=11, and B=30\degree

\tan 30\degree=\frac{AC}{11}

AC=11\tan 30\degree

AC=\frac{11\sqrt{3}}{3}

Ans: A

2. The reference angle is the angle the terminal side makes with x-axis.

-\frac{33\pi}{8}=-4\frac{\pi}{8}

This implies that, -\frac{33\pi}{8} has a reference angle of \frac{\pi}{8}.

Ans: C

3. Let x be the shortest distance the ramp can span.

From the diagram; \tan (4.76\degree)=\frac{2.5}{x}

\implies x=\frac{2.5}{\tan (4.76\degree)}

\implies x=30.0ft

Ans:B

4. Use the Pythagorean identity: 1+\tan ^2 \theta=\sec^2 \theta.

If \cot \theta=-\frac{1}{2},then  \tan \theta=-2

\implies 1+2^2=\sec^2 \theta

\implies \sec^2 \theta=5

\implies \sec \theta=-\sqrt{5}, In QII, the secant ratio is negative.

Ans:C

5. We have \sin \frac{2\pi}{3}=\frac{\sqrt{3} }{2}

\cos \frac{\pi}{6}=\frac{\sqrt{3} }{2}

\cos \frac{\pi}{3}=\frac{1}{2}

\sin \frac{5\pi}{3}=-\frac{\sqrt{3} }{2}

\cos \frac{7\pi}{6}=-\frac{\sqrt{3} }{2}

\cos \frac{11\pi}{6}=\frac{\sqrt{3} }{2}

Ans:A and D

6.  The given function that is equivalent to f(x)=\sin x is f(x)=\cos (-x+\frac{\pi}{2}).

When we reflect the graph of  f(x)=\cos (x)  in the y-axis and shift it to the left by  \frac{\pi}{2} units, it coincides with graph of f(x)=\sin x.

Ans:C

7. The function y=\tan x is a one-to-one function on the interval [-\frac{\pi}{2},\frac{\pi}{2}]

When we restrict the domain of  y=\tan x on [-\frac{\pi}{2},\frac{\pi}{2}] it becomes an invertible function.

Ans: C

8. The given function is y=3\sin(4x-\pi)

The horizontal shift is given by \frac{C}{B}=\frac{\pi}{4}

The direction of the shift is to the right.

Ans:D

9.  \cos(-75\degree)=\cos(75\degree) by the symmetric property of even functions.

\cos(75\degree)=\cos(45\degree+30\degree)

\cos(75\degree)=\cos(45\degree) \cos30\degree-\sin(45\degree) \sin30\degree

\cos(75\degree)=\frac{\sqrt{2} }{2} \times \frac{\sqrt{3} }{2} -\frac{\sqrt{2} }{2} \times \frac{1}{2}

\cos(75\degree)=\frac{\sqrt{6}-\sqrt{2}}{4}

Ans: B

10. Recall the cosine rule: a^2=b^2+c^2-2bc\cos A

Let the angle measure opposite to the longest side be A, then a=19,b=17, and c=15.

\Rightarrow 19^2=17^2+15^2-2(17)(15)\cos A

\implies -153=-510\cos A

\implies \cos A=0.3

\implies A=\cos^{-1}(0.3)=73\degree

Ans:B

11.  We want to solve 2\sin(2x)\cos(x)-\sin(2x)=0 on the interval;

[-\frac{\pi}{2},\frac{\pi}{2}]

Factor:  \sin2(x)[2\cos(x)-1)=0

Either \sin(2x)=0 \implies x=0\frac{\pi}{2}

Or [2\cos x-1=0 This means that x=\frac{\pi}{3},-\frac{\pi}{3}

Therefore required solution is x=-\frac{\pi}{3},0,\frac{\pi}{3},\frac{\pi}{2}

Ans:D

12. Use the relation:r=\sqrt{x^2+y^2} and \theta=\tan^{-1}(\frac{y}{x})=

The given rectangular coordinate is (1,-2)

This implies that:r=\sqrt{1^2+(-2)^2}=\sqrt{5}

\theta=\tan^{-1}(\frac{-2}{1})= This means  \theta=116.6 or \theta=296.6

The polar forms are: -\sqrt{5},116.6 and \sqrt{5},296.6

Ans: B and C

13.  The polar equation that represents an ellipse is

r=\frac{2}{2-\sin \theta}.

When written in standard form; r=\frac{1}{1-0.5\sin \theta}.

The eccentricity is 0.5\:.

Therefore the r=\frac{2}{2-\sin \theta} is an ellipse.

Ans: B

14. The DeMoivre’s Theorem states that;

(\cos \theta+i\sin \theta)^n=\cos n\theta+i\sin n\theta

This implies that:

[2(\cos \frac{\pi}{9}+i\sin \frac{\pi}{9})]^3=2^3\cos 3\times \frac{\pi}{9}+i\sin 3\times \frac{\pi}{9})

[2(\cos \frac{\pi}{9}+i\sin \frac{\pi}{9})]^3=8(frac{2}{2})+i8(\frac{\sqrt{3}}{2})=4+4\sqrt{3}i

Ans: A

15. Let the initial point be (x,y), Then |v|=\sqrt{(-2-x)^2+(4-y)^2}.

If x=-8, and y=-4.

Then, |v|=\sqrt{(-2--8)^2+(4--4)^2}.

|v|=\sqrt{(-6)^2+(8)^2}=\sqrt{100}=10.

Ans: B

16. We find the dot product to see if it is zero.

u\bullet v=-6(7)+4(10)=-2

Since the dot product is not zero the vectors are not orthogonal

\theta=\cos ^{-1}(\frac{u\bullet v}{|u||v|})

\theta=\cos ^{-1}(-\frac{2}{2\sqrt{13}\times \sqrt{1149} }) =91.3\degree

Ans:B

17. Given v=5i+4j, w=2i-3j.

u=v+w

Add corresponding components

This implies u=(5i+4j)+(2i-3j)

u=(5i+2i+4j-3j)

u=7i+j

Ans:B

See attachment.


1. in abc, c is a right angle and bc= 11. if the measure of angle b= 30degrees, find ac. a) (11sqrt3
1. in abc, c is a right angle and bc= 11. if the measure of angle b= 30degrees, find ac. a) (11sqrt3

Try asking the Studen AI a question.

It will provide an instant answer!

FREE