05.04.2022

Find the area sector of AOB

. 0

Faq

Mathematics
Step-by-step answer
P Answered by Specialist

\textit{area of a sector of a circle}\\\\ A=\cfrac{\theta \pi r^2}{360}~~ \begin{cases} r=radius\\ \theta =\stackrel{degrees}{angle}\\[-0.5em] \hrulefill\\ r=12\\ \theta = 70 \end{cases}\implies \begin{array}{llll} A=\cfrac{(70)\pi (12)^2}{360}\implies A=28\pi \\\\\\ A\approx 87.96~cm^2 \end{array}

Mathematics
Step-by-step answer
P Answered by PhD

Check the picture below.

so the triangle has a height of 9 and a base of 9, since it's the radius anyway.

if we subtract the area of that triangle from the area of the circle's sector, what's leftover is just the shaded area.

20.25π - 40.5.


The area sector aob is 20.25π ft squared. find the exact area of the shaded region.
Mathematics
Step-by-step answer
P Answered by PhD

Check the picture below.

so the triangle has a height of 9 and a base of 9, since it's the radius anyway.

if we subtract the area of that triangle from the area of the circle's sector, what's leftover is just the shaded area.

20.25π - 40.5.


The area sector aob is 20.25π ft squared. find the exact area of the shaded region.
Mathematics
Step-by-step answer
P Answered by PhD

40/360 = 1/9

Sector AOB is 1/9 of the total circle.

A = pi x 3^2

A = 9pi

9pi / 9 = 1pi

The area of sector AOB is 1pi = approximately 3.1 mm^2.

Hope this helps!! :)

Mathematics
Step-by-step answer
P Answered by PhD

40/360 = 1/9

To find the area of sector AOB, we can find the area of the whole circle and divide it by 9.

Area of a circle: A = pi x r^2

A = pi x 3^2

A = 9pi / 9 = 1pi

The area of sector AOB is approximately 1pi = 3.1 mm^2.

Hope this helps!! :)

Mathematics
Step-by-step answer
P Answered by PhD

40/360 = 1/9

Sector AOB is 1/9 of the total circle.

A = pi x 3^2

A = 9pi

9pi / 9 = 1pi

The area of sector AOB is 1pi = approximately 3.1 mm^2.

Hope this helps!! :)

Mathematics
Step-by-step answer
P Answered by Specialist

(a) 314.2cm², (b) 157.1cm², (c) 78.55cm² (e) 6.77

Step-by-step explanation: (a)  Area of the circle with radius of 10 cm = πr²

                                                                          = 3.142 × 10 × 10

                                                                          = 3.142 × 100

                                                                          = 314.2cm²

The formula                                                       = πr²

(b)  Area of the half of a circle known as semicircle

                                                                         = πr²/2

                                                                         = 3.142 ×10 × 10/2

                                                                         = 3.142 × 50

                                                                         = 157.1cm²

The formula                                                      = πr²/2

(c)  A quarter of a circle is called quadrant

                                                            = πr²/4

                                                            = 3.142 × 10 × 10/4

                                                            = 314.2/4

                                                            = 78.55cm²

The formula is written thus = πr²/4, which implies that the circle is divided into 4 unit

(d) The conjecture about how to determine the area of the sector is

Formula of a sector = ∅/360(πr²)

Information

The arc  cant be 60°, therefore information incomplete.

(e) Area of the sector with the angle AOB of 60° = 24.

To find the radius of the angle, make v the subject of the formula from the formula.

Sector area = πr²∅/360°

equate formula to 24.

Therefore πr²∅/360° = 24

Multiply through by360° to make it a linear expression

It now becomes πr²∅ =24× 360°

                                                     r² = 24  x 360/π × ∅°

                                                     r² = 24 × 360° /3.142 × 60°

                                                     r² = 3,640/188.52

                                                     r² = 45.8

To find r , we take the square root of both side by applying laws of indicies

                                    Therefore r = √45 .8

                                                      r = 6.77

(f)   General formula = ∅°/360° × (πr²)

angle substended at centre by the arc = x°

assuming the radius of the circle = ycm, Therefore,  area of the sector = { ∅°/360° × πy² }

                                                     

                                                   

Try asking the Studen AI a question.

It will provide an instant answer!

FREE