Physics : asked on iamPaola
 17.10.2021

Each of the four diagrams below represents the orbit of the same comet, but each one shows the comet passing through a different segment of its orbit around the Sun. During each segment, a line drawn from the Sun to the comet sweeps out a triangular-shaped, shaded area. Assume that all the shaded regions have exactly the same area. Rank the segments of the comet’s orbit from left to right based on the length of time it takes the comet to move from Point 1 to Point 2, from longest to shortest. If you think that two (or more) of the diagrams should be ranked as equal, drag one on top of the other(s) to show this equality.

. 2

Step-by-step answer

07.06.2023, solved by verified expert
Unlock the full answer
1 students found this answer . helpful

As the areas swept by the comet shown are all equal, the travel time of the comet in each of the presented segments is also the same

Explanation:

Kepler's second law states that an object in orbit round the Sun sweeps an equal area in an equal time interval

Here we have the area swept by the comet in a particular duration of time is constant. That is a comet sweeps equal areas in its orbit around the sun in equal time. Therefore. as the areas swept by the comet shown are all equal, the travel time of the comet in each of the presented segments is also the same.

It is was helpful?

Faq

Physics
Step-by-step answer
P Answered by PhD

As the areas swept by the comet shown are all equal, the travel time of the comet in each of the presented segments is also the same

Explanation:

Kepler's second law states that an object in orbit round the Sun sweeps an equal area in an equal time interval

Here we have the area swept by the comet in a particular duration of time is constant. That is a comet sweeps equal areas in its orbit around the sun in equal time. Therefore. as the areas swept by the comet shown are all equal, the travel time of the comet in each of the presented segments is also the same.

Physics
Step-by-step answer
P Answered by PhD
Answers:
Part A.
Although Kepler wrote his laws specifically to describe the orbits of the planets around the Sun, they apply more generally. Kepler's second law tells us that as an object moves around its orbit, it sweeps out equal areas in equal times. Because all the areas shown here are equal, the time it takes the comet to travel each segment must also be the same.
Part B.
Kepler's second law tells us that the comet sweeps out equal areas in equal times. Because the area triangle is shorter and squatter for the segments nearer to the Sun, the distance must be greater for these segments in order for all the areas to be the same.
Part C.
From Parts A and B, you know that the comet takes the same time to cover each of the four segments shown, but that it travels greater distances in the segments that are closer to the Sun. Therefore, its speed must also be faster when it is closer to the Sun. In other words, the fact that that the comet sweeps out equal areas in equal times implies that its orbital speed is faster when it is nearer to the Sun and slower when it is farther away.
Answers:
Part A. 
Although Kepler wrote his laws specifically to describe the orbits of the planet
Physics
Step-by-step answer
P Answered by Master

Answer:

see below.

Step-by-step explanation:

To solve this problem, we can use the conservation of energy and conservation of momentum principles.

Conservation of energy:

The total initial energy is the rest energy of the proton and neutron, which is given by:

Ei = (mp + mn)c^2

where mp and mn are the masses of the proton and neutron, respectively, and c is the speed of light.

The total final energy is the rest energy of the deuteron plus the energy of the gamma ray, which is given by:

Ef = (md)c^2 + Eg

where md is the mass of the deuteron and Eg is the energy of the gamma ray.

According to the conservation of energy principle, the initial energy and final energy must be equal, so we have:

Ei = Ef

(mp + mn)c^2 = (md)c^2 + Eg

Conservation of momentum:

The total initial momentum is zero because the proton and neutron are at rest. The total final momentum is the momentum of the deuteron and the momentum of the gamma ray. Since the gamma ray is massless, its momentum is given by:

pg = Eg/c

where pg is the momentum of the gamma ray.

According to the conservation of momentum principle, the total final momentum must be equal to zero, so we have:

0 = pd + pg

where pd is the momentum of the deuteron.

Solving for md and pd:

From the conservation of energy equation, we can solve for md:

md = (mp + mn - Eg/c^2)/c^2

Substituting this expression into the conservation of momentum equation, we get:

pd = -pg = -Eg/c

Substituting the given values, we have:

mp = 1.6726 × 10^-27 kg mn = 1.6749 × 10^-27 kg Eg = 2.2 × 10^6 eV = 3.52 × 10^-13 J

Using c = 2.998 × 10^8 m/s, we get:

md = (1.6726 × 10^-27 kg + 1.6749 × 10^-27 kg - 3.52 × 10^-13 J/(2.998 × 10^8 m/s)^2)/(2.998 × 10^8 m/s)^2 = 3.3435 × 10^-27 kg

pd = -Eg/c = -(3.52 × 10^-13 J)/(2.998 × 10^8 m/s) = -1.1723 × 10^-21 kg·m/s

Therefore, the mass of the deuteron is 3.3435 × 10^-27 kg, and its momentum is -1.1723 × 10^-21 kg·m/s.

Physics
Step-by-step answer
P Answered by PhD

Answer:

9.6 meters

Step-by-step explanation:

Time taken by the tomatoes to each the ground

using h = 1/2 g t^2 

t^2 = 2h/g = 2 x 50/ 9.8 = 10.2

t = 3.2 sec 

horizontal ditance = speed x time = 3 x 3.2 = 9.6 meters

Physics
Step-by-step answer
P Answered by PhD

The question specifies the diameter of the screw, therefore the IMA of this screw is 0.812? / 0.318 = 8.02

Physics
Step-by-step answer
P Answered by PhD
Answer:
7.25 secs.

Explanation:
First find the distance it takes to stop
s = [v^2-u^2]/2a = 0^2 - 8.7^2/2[-2.4] = 8.7^2/4.8
Next find the time it takes to go that distance , s = ut +[1/2] at^2
8.7^2/4.8 = 8.7t +[1/2] [ -2.4]t^2 , rearrange and
t^2 -[8.7/1.2]+ 8.7^2/[(1.2)(4.8)]=0 complete the square
[t - (8.7/2.4)]^2=0
t = 8.7/2.4 = 3.625 secs
At this stage the deceleration will push the object back in the direction it came from for another 3.625 secs when it will be 8.7 m/s again
Total time , T =2t = 7.25 secs.

Note:
The term differential is used in calculus to refer to an infinitesimal (infinitely small) change in some varying quantity. For example, if x is a variable, then a change in the value of x is often denoted Δx (pronounced delta x). The differential dx represents an infinitely small change in the variable x.
Physics
Step-by-step answer
P Answered by PhD
First sum applied the Newton's second law motion: F = ma
Force = mass* acceleration
This motion define force as the product of mass times Acceleration (vs.Velocity). Since acceleration is the change in velocity divided by time,
force=(mass*velocity)/time
such that, (mass*velocity)/time=momentum/time
Therefore we get mass*velocity=momentum
Momentum=mass*velocity
Elephant mass=6300 kg; velocity=0.11 m/s
Momentum=6300*0.11
P=693 kg (m/s)
Dolphin mass=50 kg; velocity=10.4 m/s
Momentum=50*10.4
P=520 kg (m/s)
The elephant has more momentum(P) because it is large.
Physics
Step-by-step answer
P Answered by PhD
The change in temperature is 9.52°CExplanation:Since, the heat supplied by the electric kettle is totally used to increase the temperature of the water.Thus, from the law of conservation of energy can be stated as:Heat Supplied by Electric Kettle = Heat Absorbed by WaterHeat Supplied by Electric Kettle = m C ΔTwhere,Heat Supplied by Electric Kettle = 20,000 JMass of water = m = 0.5 kgSpecific Heat Capacity of Water = C = 4200 J/kg.°CChange in Temperature of Water = ΔTTherefore,20,000 J = (0.5 kg)(4200 J/kg.°C) ΔTΔT = 20,000 J/(2100 J/°C)ΔT = 9.52°C
Physics
Step-by-step answer
P Answered by PhD
Weight of barbell (m) = 100 kg
Uplifted to height (h) = 2m
Time taken= 1.5 s
Work done by Jordan = potential energy stored in barbell = mgh
= 100×2×9.8
= 1960J
Power = energy/time
= 1960/1.5
1306.67watts

Try asking the Studen AI a question.

It will provide an instant answer!

FREE