14.11.2022

Marquette King, formerly of the Denver Broncos, is practicingkicking off using a kicking holder with the ball on the ground.For one of the kicks the ball reaches a height of 90.6 m andlands on the ground 53 yds (48.5 m) away. Find the magnitudeof the initial velocity given by his kick to the ball. Treat airresistance as negligible. Hint: Even though the horizontal andvertical motions are independent, there is a quantity that iscommon to both of them.

. 12

Step-by-step answer

24.06.2023, solved by verified expert
Unlock the full answer

Explanation:

Maximum height reached = 90.6 m . Range = 48.5 m

. Let u be the initial velocity at angle α .

Horizontal range is covered by horizontal component of u .

Vertical height is achieved by vertical component

v² = u² sin² α - 2gh , t is time taken to attain maximum height .

0 = u² sin² α - 2 x 90.6 x 9.8  

u² sin² α = 2 x 887.88  ( 1 )

Range R = u² sin2α / g

48.5 = 2 u² sinα . cos α / 9.8

u² sinα . cos α = 237.65  ( 2 )

( 1 ) / ( 2 )

Tan α = 2 x 887.88 / 237.65 = 7.47

α = 82⁰

u² sin² α = 2 x 887.88

u² sin² 82 = 2 x 887.88

u² = 1812

u = 42.56  m /s

It is was helpful?

Faq

Physics
Step-by-step answer
P Answered by PhD

Explanation:

Maximum height reached = 90.6 m . Range = 48.5 m

. Let u be the initial velocity at angle α .

Horizontal range is covered by horizontal component of u .

Vertical height is achieved by vertical component

v² = u² sin² α - 2gh , t is time taken to attain maximum height .

0 = u² sin² α - 2 x 90.6 x 9.8  

u² sin² α = 2 x 887.88  ( 1 )

Range R = u² sin2α / g

48.5 = 2 u² sinα . cos α / 9.8

u² sinα . cos α = 237.65  ( 2 )

( 1 ) / ( 2 )

Tan α = 2 x 887.88 / 237.65 = 7.47

α = 82⁰

u² sin² α = 2 x 887.88

u² sin² 82 = 2 x 887.88

u² = 1812

u = 42.56  m /s

Physics
Step-by-step answer
P Answered by Specialist
Answer: Option B and C are True.

Explanation:
The weight of the two blocks acts downwards.
Let the weight of the two blocks be W. Solving for T₁ and T₂:
w = T₁/cos 60° -----(1);
w = T₂/cos 30° ----(2);
equating (1) and (2)
T₁/cos 60° = T₂/cos 30°;
T₁ cos 30° = T₂ cos 60°;
T₂/T₁ = cos 30°/cos 60°;
T₂/T₁ =1.73.
Therefore, option a is false since T₂ > T₁.
Option B is true since T₁ cos 30° = T₂ cos 60°.
Option C is true because the T₃ is due to the weight of the two blocks while T₄ is only due to one block.
Option D is wrong because T₁ + T₂ > T₃ by simple summation of the two forces, except by vector addition.
Answer: Option B and C are True.

Explanation:  
The weight of the two blocks acts downwards.
Le
Physics
Step-by-step answer
P Answered by PhD

Answer:

9.6 meters

Step-by-step explanation:

Time taken by the tomatoes to each the ground

using h = 1/2 g t^2 

t^2 = 2h/g = 2 x 50/ 9.8 = 10.2

t = 3.2 sec 

horizontal ditance = speed x time = 3 x 3.2 = 9.6 meters

Physics
Step-by-step answer
P Answered by PhD
Answer:
7.25 secs.

Explanation:
First find the distance it takes to stop
s = [v^2-u^2]/2a = 0^2 - 8.7^2/2[-2.4] = 8.7^2/4.8
Next find the time it takes to go that distance , s = ut +[1/2] at^2
8.7^2/4.8 = 8.7t +[1/2] [ -2.4]t^2 , rearrange and
t^2 -[8.7/1.2]+ 8.7^2/[(1.2)(4.8)]=0 complete the square
[t - (8.7/2.4)]^2=0
t = 8.7/2.4 = 3.625 secs
At this stage the deceleration will push the object back in the direction it came from for another 3.625 secs when it will be 8.7 m/s again
Total time , T =2t = 7.25 secs.

Note:
The term differential is used in calculus to refer to an infinitesimal (infinitely small) change in some varying quantity. For example, if x is a variable, then a change in the value of x is often denoted Δx (pronounced delta x). The differential dx represents an infinitely small change in the variable x.
Physics
Step-by-step answer
P Answered by PhD
First sum applied the Newton's second law motion: F = ma
Force = mass* acceleration
This motion define force as the product of mass times Acceleration (vs.Velocity). Since acceleration is the change in velocity divided by time,
force=(mass*velocity)/time
such that, (mass*velocity)/time=momentum/time
Therefore we get mass*velocity=momentum
Momentum=mass*velocity
Elephant mass=6300 kg; velocity=0.11 m/s
Momentum=6300*0.11
P=693 kg (m/s)
Dolphin mass=50 kg; velocity=10.4 m/s
Momentum=50*10.4
P=520 kg (m/s)
The elephant has more momentum(P) because it is large.
Physics
Step-by-step answer
P Answered by PhD
The change in temperature is 9.52°CExplanation:Since, the heat supplied by the electric kettle is totally used to increase the temperature of the water.Thus, from the law of conservation of energy can be stated as:Heat Supplied by Electric Kettle = Heat Absorbed by WaterHeat Supplied by Electric Kettle = m C ΔTwhere,Heat Supplied by Electric Kettle = 20,000 JMass of water = m = 0.5 kgSpecific Heat Capacity of Water = C = 4200 J/kg.°CChange in Temperature of Water = ΔTTherefore,20,000 J = (0.5 kg)(4200 J/kg.°C) ΔTΔT = 20,000 J/(2100 J/°C)ΔT = 9.52°C
Physics
Step-by-step answer
P Answered by PhD
Weight of barbell (m) = 100 kg
Uplifted to height (h) = 2m
Time taken= 1.5 s
Work done by Jordan = potential energy stored in barbell = mgh
= 100×2×9.8
= 1960J
Power = energy/time
= 1960/1.5
1306.67watts
Physics
Step-by-step answer
P Answered by PhD
Weight of jasmine (m) = 400 N
Height climbed on wall (h) = 5m
Total time taken in climbing = 5 sec
Work done in climbing the wall = rise in potential energy = mgh
= 400×9.8×51
= 19600J
Power generated by Jasmine = potential energy / time
= 19600/5
= 3920Watts
Physics
Step-by-step answer
P Answered by PhD
Gravity acceleration (g) = 9.8m/s^2
Time (t) = 3sec
Acceleration = velocity/time
Velocity = acceleration×time
= 9.8×3
= 29.4m/s

Try asking the Studen AI a question.

It will provide an instant answer!

FREE