01.08.2022

How do i factor n2 - n - 56

. 0

Step-by-step answer

09.07.2023, solved by verified expert
Unlock the full answer

How do i factor n2 - n - 56, №18010554, 01.08.2022 09:51

How do i factor n2 - n - 56, №18010554, 01.08.2022 09:51

_____________________________________________

How do i factor n2 - n - 56, №18010554, 01.08.2022 09:51

How do i factor n2 - n - 56, №18010554, 01.08.2022 09:51

How do i factor n2 - n - 56, №18010554, 01.08.2022 09:51

How do i factor n2 - n - 56, №18010554, 01.08.2022 09:51

_____________________________________________

How do i factor n2 - n - 56, №18010554, 01.08.2022 09:51

How do i factor n2 - n - 56, №18010554, 01.08.2022 09:51

How do i factor n2 - n - 56, №18010554, 01.08.2022 09:51

How do i factor n2 - n - 56, №18010554, 01.08.2022 09:51

Thus ;

How do i factor n2 - n - 56, №18010554, 01.08.2022 09:51

How do i factor n2 - n - 56, №18010554, 01.08.2022 09:51

How do i factor n2 - n - 56, №18010554, 01.08.2022 09:51

How do i factor n2 - n - 56, №18010554, 01.08.2022 09:51

And

How do i factor n2 - n - 56, №18010554, 01.08.2022 09:51

How do i factor n2 - n - 56, №18010554, 01.08.2022 09:51

How do i factor n2 - n - 56, №18010554, 01.08.2022 09:51

How do i factor n2 - n - 56, №18010554, 01.08.2022 09:51

So

How do i factor n2 - n - 56, №18010554, 01.08.2022 09:51

How do i factor n2 - n - 56, №18010554, 01.08.2022 09:51

How do i factor n2 - n - 56, №18010554, 01.08.2022 09:51And

How do i factor n2 - n - 56, №18010554, 01.08.2022 09:51

How do i factor n2 - n - 56, №18010554, 01.08.2022 09:51

How do i factor n2 - n - 56, №18010554, 01.08.2022 09:51

_____________________________________________

How do i factor n2 - n - 56, №18010554, 01.08.2022 09:51

How do i factor n2 - n - 56, №18010554, 01.08.2022 09:51

It is was helpful?

Faq

Mathematics
Step-by-step answer
P Answered by Specialist

{n}^{2}  - n - 56 =

(n - 8)(n + 7)

_____________________________________________

a {x}^{2}  + bx + c = 0

delta =  {b}^{2}  - 4ac

x(1) =  \frac{ - b +  \sqrt{delta} }{2a}  \\

x(2) = \frac{ - b -  \sqrt{delta} }{2a}  \\

_____________________________________________

{n}^{2}  - n - 56 = 0

delta =  ({ - 1})^{2}  - 4(1)( - 56)

delta = 1  + 224

delta = 225

Thus ;

n(1) =  \frac{ - ( -1) +  \sqrt{225} }{2 \times 1}  \\

n(1) =  \frac{1 + 15}{2}  \\

n(1) =  \frac{16}{2}  \\

n(1) = 8

And

n(2) =  \frac{ - ( - 1) -  \sqrt{225} }{2 \times 1}  \\

n(2) =  \frac{  1 - 15}{2}  \\

n(2) =  -  \frac{14}{2}  \\

n(2) =  - 7

So

n(1) = 8

n(1) - 8 = 0 \:  \:  \:  (\alpha )

n - 8 = 0 \:  \:  \:  \: ( \alpha )And

n(2) =  - 7

n(2) + 7 = 0 \:  \:  \:  \:  \: ( \beta )

n + 7 = 0 \:  \:  \:  \: ( \beta )

_____________________________________________

\alpha  \times  \beta  =

(n - 8)(n + 7)

Mathematics
Step-by-step answer
P Answered by PhD

QUESTION 16



If the demand and supply are equal, then we equate the two functions in p and solve for p.



That is



S(p)=D(p)


400 - 4p + + 0.00002 {p}^{4} = 2800 - 0.0012 {p}^{3}



We can rearrange to obtain,



0.00002 {x}^{4} + 0.0012 {x}^{3} - 4x - 2400 = 0



2 {p}^{2} + 1200 {p}^{3} - 400000p - 240000000 = 0



The real roots of this polynomial equation are:



p = - 118.26 \: p = 96.24



Since price can not be negative, we discard the negative value ,


p = 96.24


The correct answer for question 16 is C.



QUESTION 17



We were given the solution to this polynomial as



x=2,x=-4, x=1+3i



We need to recognize the presence of the complex root and treat it nicely.



There is one property about complex roots of polynomial equations called the complex conjugate property. According to this property, if


a + bi



is a solution to


p(x)


then the complex conjugate


a - bi


is also a root.



Since


x = 1 + 3i



is a solution then,



x = 1 - 3i


is also a solution.



Therefore we have



f(x) = (x - 2)(x + 4)(x - (1+3i))(x - (1 - 3i)



f(x) = ( {x}^{2} + 4x - 2x - 8)( {x}^{2} - (1 - 3i)x - (1 + 3i)x + (1 + 3i)(1 - 3i))



We expand to obtain,



( {x}^{2} + 4x - 2x - 8)( {x}^{2} - x + 3xi - x - 3xi + 1 + 9)


Note that:



{i}^{2} = - 1



f(x) = ( {x}^{2} + 2x - 8)( {x}^{2} - 2x + 10)



We now expand to obtain,



f(x) = {x}^{4} - 2 {x}^{3} + 10 {x}^{2} + 2 {x}^{3} - 4 {x }^{2} + 20x - 8 {x}^{2} + 16x - 80



We simplify further to obtain,



f(x) = {x}^{4} + 2 {x}^{2} + 36x - 80



The correct answer for question 17 is A.



QUESTION 18



If



-2i


is a zero of the polynomial,



f(x)=x^4-45x^2-196



then the complex conjugate



2i



is also a zero,



This means that ,


(x+2i), (x-2i)



are factors of the polynomial.



The product of these two factors,



(x+2i), (x-2i) =x^2-(2i)^2=x^2+4



is also a factor , so we use it to divide and get the remaining factors.



see diagram for long division.



The above polynomial can therefore factored completely as,



f(x)=(x^2+4)(x^2-49)



Applying our knowledge from difference of two squares, we obtain,



f(x)=(x+2i)(x-2i))(x-7)(x+7)



Hence all the zeroes of these polynomial can be found by setting



(x+2i)(x-2i))(x-7)(x+7)=0


This implies,



x=-2i,x=2i,x=7,x=-7



The correct answer for question 18 is B



QUESTION 19



We were asked to find the horizontal and vertical asymptote of



f(x)=\frac{2x^2+1}{x^2-1}



To find the horizontal asymptote, divide the term with the highest degree in the numerator by the term with the highest degree in the denominators. That is the horizontal asymptote is given by,



y=\frac{2x^2}{x^2}=2



For vertical asymptote, equate the denominator to zero and solve for x.



x^2-1=



\Rightarrow x=-1, x=1



None of the options is correct, so the correct answer for question 19 is A.



QUESTION 20



We are converting,



\frac{5\pi}{6}



to degrees .



To convert from radians to degrees, multiply by,



\frac{180\degree}{\pi}



That is,



\frac{5\pi}{6}=\frac{5\pi}{6} \times \frac{180\degree}{\pi}



We simplify to obtain,



\frac{5\pi}{6}=\frac{5}{1} \times \frac{180\degree}{1}=5\times30\degree =150\degree



The correct answer is B.



QUESTION 21



Recall the mnemonics, SOH CAH TOA



The sine ratio is given by,



\sin(B)=\frac{21}{75}=\frac{7}{25}



From the diagram,



\tan(B)=\frac{21}{72}=\frac{7}{24}



The correct answer is C.



QUESTION 22



From the above diagram, We can determine the value of x using the sine or cosine ratio, depending on where the 17 is placed.



Using the cosine ratio, we obtain,



\cos(58\degree)=\frac{17}{x}



We can simply switch positions to make x the subject.



x=\frac{17}{\cos(58\degree)}



x=\frac{17}{0.5299}



x=32.08



Hence the correct answer is A.



QUESTION 23



Coterminal angles have the same terminal sides.



To find coterminal angles, we keep adding or subtracting 360 degrees.



See diagram.



x=202\degree



is coterminal with



202\degree +360\degree =562\degree



or



202\degree -360\degree =-158\degree



The correct answer is D.



See the attached file for continuation.


16. photon lighting company determines that the supply and demand functions for its most popular lam
16. photon lighting company determines that the supply and demand functions for its most popular lam
16. photon lighting company determines that the supply and demand functions for its most popular lam
16. photon lighting company determines that the supply and demand functions for its most popular lam
16. photon lighting company determines that the supply and demand functions for its most popular lam
Mathematics
Step-by-step answer
P Answered by PhD

QUESTION 16



If the demand and supply are equal, then we equate the two functions in p and solve for p.



That is



S(p)=D(p)


400 - 4p + + 0.00002 {p}^{4} = 2800 - 0.0012 {p}^{3}



We can rearrange to obtain,



0.00002 {x}^{4} + 0.0012 {x}^{3} - 4x - 2400 = 0



2 {p}^{2} + 1200 {p}^{3} - 400000p - 240000000 = 0



The real roots of this polynomial equation are:



p = - 118.26 \: p = 96.24



Since price can not be negative, we discard the negative value ,


p = 96.24


The correct answer for question 16 is C.



QUESTION 17



We were given the solution to this polynomial as



x=2,x=-4, x=1+3i



We need to recognize the presence of the complex root and treat it nicely.



There is one property about complex roots of polynomial equations called the complex conjugate property. According to this property, if


a + bi



is a solution to


p(x)


then the complex conjugate


a - bi


is also a root.



Since


x = 1 + 3i



is a solution then,



x = 1 - 3i


is also a solution.



Therefore we have



f(x) = (x - 2)(x + 4)(x - (1+3i))(x - (1 - 3i)



f(x) = ( {x}^{2} + 4x - 2x - 8)( {x}^{2} - (1 - 3i)x - (1 + 3i)x + (1 + 3i)(1 - 3i))



We expand to obtain,



( {x}^{2} + 4x - 2x - 8)( {x}^{2} - x + 3xi - x - 3xi + 1 + 9)


Note that:



{i}^{2} = - 1



f(x) = ( {x}^{2} + 2x - 8)( {x}^{2} - 2x + 10)



We now expand to obtain,



f(x) = {x}^{4} - 2 {x}^{3} + 10 {x}^{2} + 2 {x}^{3} - 4 {x }^{2} + 20x - 8 {x}^{2} + 16x - 80



We simplify further to obtain,



f(x) = {x}^{4} + 2 {x}^{2} + 36x - 80



The correct answer for question 17 is A.



QUESTION 18



If



-2i


is a zero of the polynomial,



f(x)=x^4-45x^2-196



then the complex conjugate



2i



is also a zero,



This means that ,


(x+2i), (x-2i)



are factors of the polynomial.



The product of these two factors,



(x+2i), (x-2i) =x^2-(2i)^2=x^2+4



is also a factor , so we use it to divide and get the remaining factors.



see diagram for long division.



The above polynomial can therefore factored completely as,



f(x)=(x^2+4)(x^2-49)



Applying our knowledge from difference of two squares, we obtain,



f(x)=(x+2i)(x-2i))(x-7)(x+7)



Hence all the zeroes of these polynomial can be found by setting



(x+2i)(x-2i))(x-7)(x+7)=0


This implies,



x=-2i,x=2i,x=7,x=-7



The correct answer for question 18 is B



QUESTION 19



We were asked to find the horizontal and vertical asymptote of



f(x)=\frac{2x^2+1}{x^2-1}



To find the horizontal asymptote, divide the term with the highest degree in the numerator by the term with the highest degree in the denominators. That is the horizontal asymptote is given by,



y=\frac{2x^2}{x^2}=2



For vertical asymptote, equate the denominator to zero and solve for x.



x^2-1=



\Rightarrow x=-1, x=1



None of the options is correct, so the correct answer for question 19 is A.



QUESTION 20



We are converting,



\frac{5\pi}{6}



to degrees .



To convert from radians to degrees, multiply by,



\frac{180\degree}{\pi}



That is,



\frac{5\pi}{6}=\frac{5\pi}{6} \times \frac{180\degree}{\pi}



We simplify to obtain,



\frac{5\pi}{6}=\frac{5}{1} \times \frac{180\degree}{1}=5\times30\degree =150\degree



The correct answer is B.



QUESTION 21



Recall the mnemonics, SOH CAH TOA



The sine ratio is given by,



\sin(B)=\frac{21}{75}=\frac{7}{25}



From the diagram,



\tan(B)=\frac{21}{72}=\frac{7}{24}



The correct answer is C.



QUESTION 22



From the above diagram, We can determine the value of x using the sine or cosine ratio, depending on where the 17 is placed.



Using the cosine ratio, we obtain,



\cos(58\degree)=\frac{17}{x}



We can simply switch positions to make x the subject.



x=\frac{17}{\cos(58\degree)}



x=\frac{17}{0.5299}



x=32.08



Hence the correct answer is A.



QUESTION 23



Coterminal angles have the same terminal sides.



To find coterminal angles, we keep adding or subtracting 360 degrees.



See diagram.



x=202\degree



is coterminal with



202\degree +360\degree =562\degree



or



202\degree -360\degree =-158\degree



The correct answer is D.



See the attached file for continuation.


16. photon lighting company determines that the supply and demand functions for its most popular lam
16. photon lighting company determines that the supply and demand functions for its most popular lam
16. photon lighting company determines that the supply and demand functions for its most popular lam
16. photon lighting company determines that the supply and demand functions for its most popular lam
16. photon lighting company determines that the supply and demand functions for its most popular lam
Mathematics
Step-by-step answer
P Answered by PhD

Cost of 7 gallons=$24.50

Cost of 1 gallon=24.50/7=3.5

Cost of 15 gallons=15*3.5=52.5

Cost of 15 gallons will be $52.5

Mathematics
Step-by-step answer
P Answered by PhD

For 1 flavor there are 9 topping

Therefore, for 5 different flavors there will be 5*9 choices

No of choices= 5*9

=45 

Mathematics
Step-by-step answer
P Answered by PhD

y=2x+15

where y=Value of coin

x=Age in years

Value of coin after 19 years=2*19+15

=$53

Therefore, Value after 19 years=$53

Mathematics
Step-by-step answer
P Answered by PhD

F=ma

where F=force

m=mass

a=acceleration

Here,

F=4300

a=3.3m/s2

m=F/a

    =4300/3.3

    =1303.03kg

Mathematics
Step-by-step answer
P Answered by PhD

Salesperson will make 6% of 1800

=(6/100)*1800

=108

Salesperson will make $108 in $1800 sales

Mathematics
Step-by-step answer
P Answered by PhD

The wood before starting =12 feet

Left wood=6 feet

Wood used till now=12-6=6 feet

Picture frame built till now= 6/(3/4)

=8 pieces

Therefore, till now 8 pieces have been made.

Try asking the Studen AI a question.

It will provide an instant answer!

FREE