31.10.2021

A small block with mass 0.200 kg is released from rest at the top of a frictionless incline. The block travels a distance 0.796 m down the incline in 2.00 s. The 0.200 kg block is replaced by a 0.400 kg block. If the 0.400 kg block is released from rest at the top of the incline, how far down the incline does it travel in 2.00 s

. 1

Step-by-step answer

24.06.2023, solved by verified expert
Unlock the full answer

distance travelled by the block is 0.796 m

{ acceleration is independent of mass, so both the masses travel equal distance in 2 s }

Explanation:

Given that;

mass of block m = 0.200 kg

distance travelled d = 0.796 m

time t = 2.00 s

m₂ = 0.400 kg

If the 0.400 kg block is released from rest at the top of the incline, how far down the incline does it travel in 2.00 s?

Now, using the second equation of motion;

d = ut + (A small block with mass 0.200 kg is released, №17887023, 31.10.2021 02:44 × at²)

as the object started from rest, u=0

so, we substitute

0.796  = 0×2 + (A small block with mass 0.200 kg is released, №17887023, 31.10.2021 02:44 × a(2)²)

0.796  = 0 + (A small block with mass 0.200 kg is released, №17887023, 31.10.2021 02:44 × 4a)

0.796  = 2a

a = 0.796 / 2

a = 0.398 m/s²

using first equation of motion

A small block with mass 0.200 kg is released, №17887023, 31.10.2021 02:44 = u + at

we substitute

A small block with mass 0.200 kg is released, №17887023, 31.10.2021 02:44 = 0 + 0.398 × 2

A small block with mass 0.200 kg is released, №17887023, 31.10.2021 02:44 = 0.796 m/s

now, average velocity is given as;

A small block with mass 0.200 kg is released, №17887023, 31.10.2021 02:44 = ( 0.796 m/s  + 0 ) / 2

A small block with mass 0.200 kg is released, №17887023, 31.10.2021 02:44 = ( 0.796 m/s  + 0 ) / 2

now, distance as the block moves in 2s will be;

D = [( 0.796 m/s  + 0 ) / 2 ] × 2

D = 0.796 m

Therefore, distance travelled by the block is 0.796 m

{ acceleration is independent of mass, so both the masses travel equal distance in 2 s }

It is was helpful?

Faq

Physics
Step-by-step answer
P Answered by PhD

distance travelled by the block is 0.796 m

{ acceleration is independent of mass, so both the masses travel equal distance in 2 s }

Explanation:

Given that;

mass of block m = 0.200 kg

distance travelled d = 0.796 m

time t = 2.00 s

m₂ = 0.400 kg

If the 0.400 kg block is released from rest at the top of the incline, how far down the incline does it travel in 2.00 s?

Now, using the second equation of motion;

d = ut + (\frac{1}{2} × at²)

as the object started from rest, u=0

so, we substitute

0.796  = 0×2 + (\frac{1}{2} × a(2)²)

0.796  = 0 + (\frac{1}{2} × 4a)

0.796  = 2a

a = 0.796 / 2

a = 0.398 m/s²

using first equation of motion

V_{f} = u + at

we substitute

V_{f} = 0 + 0.398 × 2

V_{f} = 0.796 m/s

now, average velocity is given as;

V_{avg} = ( 0.796 m/s  + 0 ) / 2

V_{avg} = ( 0.796 m/s  + 0 ) / 2

now, distance as the block moves in 2s will be;

D = [( 0.796 m/s  + 0 ) / 2 ] × 2

D = 0.796 m

Therefore, distance travelled by the block is 0.796 m

{ acceleration is independent of mass, so both the masses travel equal distance in 2 s }

Physics
Step-by-step answer
P Answered by Specialist
Options:
a. a lower frequency and a shorter wavelength.
b. a higher frequency and a longer wavelength.
c. a lower frequency and a longer wavelength.
d. a higher frequency and a shorter wavelength

Answer:
d. a higher frequency and a shorter wavelength

Explanation:
The frequency of a wave is inversely proportional to its wavelength. That means that waves with a high frequency have a short wavelength, while waves with a low frequency have a longer wavelength. Light waves have very, very short wavelengths.
For example, Gamma rays have the highest energies, the shortest wavelengths, and the highest frequencies. Radio waves, on the other hand, have the lowest energies, longest wavelengths, and lowest frequencies of any type of EM radiation.
Options:
a. a lower frequency and a shorter wavelength.
b. a higher frequency and a longer wavelen
Physics
Step-by-step answer
P Answered by Specialist
Answer: Option B and C are True.

Explanation:
The weight of the two blocks acts downwards.
Let the weight of the two blocks be W. Solving for T₁ and T₂:
w = T₁/cos 60° -----(1);
w = T₂/cos 30° ----(2);
equating (1) and (2)
T₁/cos 60° = T₂/cos 30°;
T₁ cos 30° = T₂ cos 60°;
T₂/T₁ = cos 30°/cos 60°;
T₂/T₁ =1.73.
Therefore, option a is false since T₂ > T₁.
Option B is true since T₁ cos 30° = T₂ cos 60°.
Option C is true because the T₃ is due to the weight of the two blocks while T₄ is only due to one block.
Option D is wrong because T₁ + T₂ > T₃ by simple summation of the two forces, except by vector addition.
Answer: Option B and C are True.

Explanation:  
The weight of the two blocks acts downwards.
Le
Physics
Step-by-step answer
P Answered by PhD

Answer:

9.6 meters

Step-by-step explanation:

Time taken by the tomatoes to each the ground

using h = 1/2 g t^2 

t^2 = 2h/g = 2 x 50/ 9.8 = 10.2

t = 3.2 sec 

horizontal ditance = speed x time = 3 x 3.2 = 9.6 meters

Physics
Step-by-step answer
P Answered by PhD
Answer:
7.25 secs.

Explanation:
First find the distance it takes to stop
s = [v^2-u^2]/2a = 0^2 - 8.7^2/2[-2.4] = 8.7^2/4.8
Next find the time it takes to go that distance , s = ut +[1/2] at^2
8.7^2/4.8 = 8.7t +[1/2] [ -2.4]t^2 , rearrange and
t^2 -[8.7/1.2]+ 8.7^2/[(1.2)(4.8)]=0 complete the square
[t - (8.7/2.4)]^2=0
t = 8.7/2.4 = 3.625 secs
At this stage the deceleration will push the object back in the direction it came from for another 3.625 secs when it will be 8.7 m/s again
Total time , T =2t = 7.25 secs.

Note:
The term differential is used in calculus to refer to an infinitesimal (infinitely small) change in some varying quantity. For example, if x is a variable, then a change in the value of x is often denoted Δx (pronounced delta x). The differential dx represents an infinitely small change in the variable x.
Physics
Step-by-step answer
P Answered by PhD
First sum applied the Newton's second law motion: F = ma
Force = mass* acceleration
This motion define force as the product of mass times Acceleration (vs.Velocity). Since acceleration is the change in velocity divided by time,
force=(mass*velocity)/time
such that, (mass*velocity)/time=momentum/time
Therefore we get mass*velocity=momentum
Momentum=mass*velocity
Elephant mass=6300 kg; velocity=0.11 m/s
Momentum=6300*0.11
P=693 kg (m/s)
Dolphin mass=50 kg; velocity=10.4 m/s
Momentum=50*10.4
P=520 kg (m/s)
The elephant has more momentum(P) because it is large.
Physics
Step-by-step answer
P Answered by PhD
The change in temperature is 9.52°CExplanation:Since, the heat supplied by the electric kettle is totally used to increase the temperature of the water.Thus, from the law of conservation of energy can be stated as:Heat Supplied by Electric Kettle = Heat Absorbed by WaterHeat Supplied by Electric Kettle = m C ΔTwhere,Heat Supplied by Electric Kettle = 20,000 JMass of water = m = 0.5 kgSpecific Heat Capacity of Water = C = 4200 J/kg.°CChange in Temperature of Water = ΔTTherefore,20,000 J = (0.5 kg)(4200 J/kg.°C) ΔTΔT = 20,000 J/(2100 J/°C)ΔT = 9.52°C

Try asking the Studen AI a question.

It will provide an instant answer!

FREE